Skip to main content

Stabilization of melon phase during the formation of g-C3N4 from melamine and its structure-property relationship towards photocatalytic degradation of dyes under sunlight


The structure-property relationship of various intermediates formed during the step-wise dwell-in thermal condensation of melamine to g-C3N4 under a range of reaction temperatures such as 350, 400, 450 and 500 °C is investigated. Apart from the conventional intermediates such as melam and melem, the melon phase has been stabilized via dwell-in thermal condensation temperature at 450 °C. The properties of this melon phase are explored by comparing the characteristics of melam, melem and g-C3N4 using structural, morphological and optical studies. Finally, the photocatalytic properties of all these structures (melam, melem, melon and g-C3N4) have been investigated towards the degradation of dyes such as methylene blue (48, 56, 78 and 93%, respectively), rhodamine B (19, 36, 64 and 89%, respectively) and their mixtures (i.e. MB + RhB) under sunlight irradiation. From the obtained results, it is predicted that this melon phase may consist the modified-heptazine frameworks and more terminal-amine groups. Such features enable this melon phase to have appropriate band edge potentials, narrow band gap energy (~ 2.89, 2.80, 2.72 and 2.64 eV, respectively) with rapid charge separation abilities and thereby to have excellent optical and photocatalytic properties as compared to the other intermediates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    A. Wang, C. Wang, L. Fu, W.N. Winnie, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9, 47 (2017)

    CAS  Article  Google Scholar 

  2. 2.

    L. Tan, C. Nie, Z. Ao, H. Sun, T. An, S. Wang, Novel two-dimensional crystalline carbon nitrides beyond g-C3N4: structure and applications. J. Mater. Chem. A 9, 17–33 (2021)

    CAS  Article  Google Scholar 

  3. 3.

    M.H. Vu, M. Sakar, C.C. Nguyen, T.O. Do, Enhanced hydrogen production by the protonated, sulfur doped and Pt-loaded g-C3N4 nanolayers. Mater. Lett. 218, 169–172 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    W.K. Darkwah, K.A. Oswald, Photocatalytic applications of heterostructure graphitic carbon nitride: pollutant degradation, hydrogen gas production (water splitting), and CO2 reduction. Nanoscale Res. Lett. 14, 234 (2019)

    Article  Google Scholar 

  5. 5.

    M. Ismael, A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 846, 156446 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    C.C. Nguyen, M. Sakar, M.H. Vu, T.O. Do, Nitrogen vacancies-assisted the enhanced plasmonic photoactivities of Au/g-C3N4 crumpled nanolayers: A novel pathway toward efficient solar light-driven photocatalysts. Ind. Eng. Chem. Res. 58, 3698–3706 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    M.H. Vu, M. Sakar, C.C. Nguyen, Do, chemically bonded Ni co-catalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement n H2 production under sunlight irradiation. ACS Sustain. Chem. Eng. 6, 4194–4203 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    H. Dong, X. Guo, C. Yang, Z. Ouyang, Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin. Appl. Catal. B 230, 65–76 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    N. Liu, T. Li, Z. Zhao, J. Liu, X. Luo, X. Yuan, K. Luo, J. He, D. Yu, Y. Zhao, From triazine to heptazine: origin of graphitic carbon nitride as a photocatalyst. ACS Omega 21, 12557–12567 (2020)

    Article  Google Scholar 

  10. 10.

    A. Savateev, I. Ghosh, B. König, M. Antonietti, Photoredox Catalytic Organic Transformations using Heterogeneous Carbon Nitrides. Angew. Chem. Int. Ed. Engl. 57, 15936–15947 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    E. Wirnhier, M.B. Mesch, J. Senker, W. Schnick, Formation and characterization of melam, melam hydrate, and a melam-melem adduct. Chem. Eur. J. 19, 2041–2049 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    A. Sattler, S. Pagano, M. Zeuner, A. Zurawski, D. Gunzelmann, J. Senker, K. Müller-Buschbaum, W. Schnick, Melamine-melem adduct phases: investigating the thermal condensation of melamine. Chemistry 15, 13161–13170 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    T.S. Miller, A. Belen Jorge, T.M. Suter, A. Sella, F. Cora, P.F. McMillan, Carbon nitrides: synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 19, 15613–15638 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobio. C 20, 33–50 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    H. Dai, X. Gao, E. Liu, Y.H. Yang, W.Q. Hou, L.M. Kang, J. Fan, X. Hu, Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition. Diam. Relat. Mater. 38, 109–117 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    F. Fina, S.K. Callear, G.M. Carins, J.T.S. Irvine, Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 27, 2612–2618 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    Y. Miyake, G. Seo, K. Matsuhashi, N. Takada, K. Kanai, Synthesis of carbon nitride oligomer as a precursor of melon with improved fluorescence quantum yield. Mater. Adv. (2021). DOI:

    Article  Google Scholar 

  18. 18.

    G. Nabi, N. Malik, W. Raza, Degradation effect of temperature variation and dye loading g-C3N4 towards organic dyes. Inorg. Chem. Comm. 119, 108050 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    Y. Wang, Y. Zhang, B. Li, K. Luo, K. Shi, L. Zhang, Y. Li, T. Yu, W. Hu, C. Xie, Y. Wu, L. Su, X. Dong, Z. Zhao, G. Yang, Restacked melon as highly-efficient photocatalyst. Nano Energy 77, 105124 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    D. Yang, L.L. Li, G. Xiao, S. Zhang, Steering charge kinetics in metal-free g-C3N4/melem hybrid photocatalysts for highly efficient visible-light-driven hydrogen evolution. Appl. Surf. Sci. 510, 145345 (2020)

    CAS  Article  Google Scholar 

  21. 21.

    S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic degradation of ciprofloxacin under solar irradiation. J. Mater. Sci. 54, 5726–5742 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    Y. Yuan, L. Zhang, J. Xing, M.I.B. Utama, X. Lu, K. Du, Y. Li, X. Hu, S. Wang, A. Genç, R. Dunin-Borkowski, J. Arbiol, Q. Xiong, High-yield synthesis and optical properties of g-C3N4. Nanoscale 7, 12343–12350 (2015)

    CAS  Article  Google Scholar 

  23. 23.

    J. Wen, R. Li, R. Lu, A. Yu, Photophysics and photocatalysis of melem: a spectroscopic reinvestigation. Chem. Asian J. 13, 1060–1066 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Synthesis and luminescence mechanism of multicolor-emitting g-C3N4nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 3, 1943 (2013)

    Article  Google Scholar 

  25. 25.

    W. Zhang, C. Xu, T. Kobayashi, Y. Zhong, Z. Guo, H. Zhan, M. Pruski, W. Huang, Hydrazone-linked heptazine polymeric carbon nitrides for synergistic visible-light-driven catalysis. Chemistry 26, 7358–7364 (2020)

    CAS  Article  Google Scholar 

  26. 26.

    A. Gupta, N. Khosla, V. Govindasamy, A. Saini, K. Annapurna, S.R. Dhakate, Trimetallic composite nanofibers for antibacterial and photocatalytic dye degradation of mixed dye water. Appl. Nanosci. 10, 4191–4205 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    B. Regmi, D. Dhakal, S.W. Lee, Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance. Nanotechnology 29, 064001 (2018)

    Article  Google Scholar 

  28. 28.

    H. Zhang, A. Yu, Photophysics and photocatalysis of carbon nitride synthesized at different temperatures. J. Phys. Chem. C 118, 11628–11635 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. Engl. 54, 12868–12884 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    K.H. Huang, S.S. Hou, J.J. Wu, bridging functional groups governing the charge transfer dynamic in an amorphous carbon nitride allotropic heterojunction toward efficient solar hydrogen evolution. Sol. RRL 5, 2000496 (2021)

    CAS  Article  Google Scholar 

Download references


One of the authors MS gratefully acknowledges the Department of Science and Technology, Govt. of India for funding support through DST-INSPIRE Faculty Award (DST/INSPIRE/04/ 2016/002227).

Author information



Corresponding author

Correspondence to R. Ilangovan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3950.2 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vijayarangan, R., Sakar, M. & Ilangovan, R. Stabilization of melon phase during the formation of g-C3N4 from melamine and its structure-property relationship towards photocatalytic degradation of dyes under sunlight. J Mater Sci: Mater Electron (2021).

Download citation