Skip to main content

Advertisement

Log in

Investigation of co-doped Chlorella vulgaris as a supercapacitor electrode for energy storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Supercapacitors are becoming more popular in the field of energy storage day by day. Thanks to their superior features such as fast charge–discharge, high capacities, and stable structures. Especially, supercapacitors designed using biomass as the electrode material are more preferred in this field because they are cheap, abundant, environmentally friendly, high capacity, and have a long cycle life. In this study, two supercapacitor cells were developed using freshwater algae biomass. In the first stage, supercapacitor electrodes were prepared by Co-doped Chlorella vulgaris (Chl-Co), and in the second stage, electrodes were prepared by Co-doped to H3PO4-washed Chlorella vulgaris (Chl-Co-H3PO4). 6 M KOH solution was used as the electrolyte. Electrochemical characterization results of the electrodes were obtained very close to the ideal supercapacitor characteristic. The capacitance values of the Chl-Co electrode were measured as 80 F/g for 1 A/g, but after the activation by H3PO4, the capacitance rose to 169.7 F/g for 1 A/g. The produced electrodes are promising for energy storage in terms of environmental pollution, cost, stability, and capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Azcarate, F. Mallor, P. Mateo, Renew. Energy 102, 445 (2017)

    Article  Google Scholar 

  2. J.R. McKone, F.J. DiSalvo, H.D. Abruña, J. Mater. Chem. A 5, 5362 (2017)

    Article  CAS  Google Scholar 

  3. L. Tang, Y. Zhou, X. Zhou, Y. Chai, Q. Zheng, D. Lin, J. Mater. Sci. Mater. Electron. 30, 2600 (2019)

    Article  CAS  Google Scholar 

  4. W. Tang, Y. Zhang, Y. Zhong et al., Mater. Res. Bull. 88, 234 (2017)

    Article  CAS  Google Scholar 

  5. J.V. Nabais, J.G. Teixeira, I. Almeida, Bioresour. Technol. 102, 2781 (2011)

    Article  Google Scholar 

  6. R. Farma, M. Deraman, A. Awitdrus et al., Bioresour. Technol. 132, 254 (2013)

    Article  CAS  Google Scholar 

  7. F.-C. Wu, R.-L. Tseng, C.-C. Hu, C.-C. Wang, J. Power Sources 144, 302 (2005)

    Article  CAS  Google Scholar 

  8. M. Olivares-Marín, J.A. Fernández, M.J. Lázaro et al., Mater. Chem. Phys. 114, 323 (2009)

    Article  Google Scholar 

  9. D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Angew. Chem. Int. Ed. 44, 3358 (2005)

    Article  CAS  Google Scholar 

  10. F. Duman, M.R. Atelge, M. Kaya et al., Int. J. Hydrogen Energy 45, 12755 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.068

    Article  CAS  Google Scholar 

  11. M. Kaya, M. Bekirogulları, EJOSAT 16, 69–76 (2019)

    Google Scholar 

  12. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  13. M. Bekirogullari, Int. J. Hydrogen Energy 44, 14981 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.147

    Article  CAS  Google Scholar 

  14. U. Suparmaniam, M.K. Lam, Y. Uemura et al., Sci. Total Environ. 702, 134995 (2020). https://doi.org/10.1016/j.scitotenv.2019.134995

    Article  CAS  Google Scholar 

  15. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Carbon 49, 2917 (2011)

    Article  CAS  Google Scholar 

  16. X. Yan, Y. Yu, X. Yang, RSC Adv. 4, 24986 (2014)

    Article  CAS  Google Scholar 

  17. J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau, J. Power Sources 101, 109 (2001)

    Article  CAS  Google Scholar 

  18. X. Zhu, S. Yu, K. Xu et al., Chem. Eng. Sci. 181, 36 (2018)

    Article  CAS  Google Scholar 

  19. X. Song, X. Ma, Y. Li, L. Ding, R. Jiang, Appl. Surf. Sci. 487, 189 (2019)

    Article  CAS  Google Scholar 

  20. M. Mehare, A. Deshmukh, S. Dhoble, J. Mater. Sci. Mater. Electron. 32, 14057 (2021)

    Article  CAS  Google Scholar 

  21. Y. Zhang, S. Liu, X. Zheng et al., Adv. Funct. Mater. 27, 1604687 (2017)

    Article  Google Scholar 

  22. I.I.G. Inal, M. Akdemir, M. Kaya, Int. J. Hydrogen Energy 46, 21534 (2021)

    Article  CAS  Google Scholar 

  23. W. Kang, B. Lin, G. Huang et al., J. Mater. Sci. Mater. Electron. 29, 6361 (2018)

    Article  CAS  Google Scholar 

  24. N. Manyala, A. Bello, F. Barzegar, A.A. Khaleed, D.Y. Momodu, J.K. Dangbegnon, Mater. Chem. Phys. 182, 139 (2016)

    Article  CAS  Google Scholar 

  25. D. Lan, M. Chen, Y. Liu et al., J. Mater. Sci. Mater. Electron. 31, 18541 (2020)

    Article  Google Scholar 

  26. W. Zhang, N. Lin, D. Liu et al., Energy 128, 618 (2017)

    Article  CAS  Google Scholar 

  27. M. Akdemir, T. Avci Hansu, A. Caglar, M. Kaya, H. Demir Kivrak, Energy Storage 3, e243 (2021)

    Article  CAS  Google Scholar 

  28. M. Chen, X. Kang, T. Wumaier et al., J. Solid State Electrochem. 17, 1005 (2013)

    Article  CAS  Google Scholar 

  29. Y. Luan, Y. Huang, L. Wang, M. Li, R. Wang, B. Jiang, J. Electroanal. Chem. 763, 90 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author wishes to thank Dr. Mustafa Kaya, Dr. Tülin Avcı Hansu, and Muhammed Raşit ATELGE for providing advice, scientific help and technical support.

Funding

The author received no financial support for the research, authorship and publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Akdemir.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akdemir, M. Investigation of co-doped Chlorella vulgaris as a supercapacitor electrode for energy storage. J Mater Sci: Mater Electron 32, 27243–27250 (2021). https://doi.org/10.1007/s10854-021-07090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07090-z

Navigation