Skip to main content
Log in

Structural, dielectric and reflection analysis of ZnxMg1−xTiO3 ceramics synthesized using auto-ignition combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc-substituted magnesium titanate ZnxMg1−xTiO3 (x = 0.00–0.10, δx = 0.025) solid solutions were synthesized using auto-ignition combustion process and characterized for structural, dielectric and reflection properties. X-ray diffraction analysis discovered the creation of single-phase MgTiO3. Scanning electron microscopy (SEM) indicated the existence of low porosity closely packed grains. The study of the dielectric properties indicated that for ZnxMg1−xTiO3 with x = 0.05, a reasonably great combination of the relative permittivity (ɛr) with value 16.60, loss tangent (tanδ) of 0.9 × 10−3 and temperature coefficient of resonant frequency (τf) of − 41.37 ppm/°C at 10 kHz was observed. The electromagnetic reflection analysis at microwave frequencies (12.4–26.5 GHz) revealed that composition x = 0.05 shows maximum 90% reflection bandwidth of 5.60 GHz in the Ku frequency band and 4.59 GHz in the K frequency band. These materials with low to intermediate relative permittivity, low losses, and a minor negative temperature coefficient of resonant frequency might be utilized as a resonator, antenna, and filter substrate for next-generation communication devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Yes, data may available on the recommendation of the corresponding author.

Code availability

No.

References

  1. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008). https://doi.org/10.1179/174328008X277524

    Article  CAS  Google Scholar 

  2. P.J. Wang, D. Zhou, J. Li et al., Significantly enhanced electrostatic energy storage performance of P(VDF-HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3 nanocomposites. Nano Energy 78, 105247 (2020). https://doi.org/10.1016/j.nanoen.2020.105247

    Article  CAS  Google Scholar 

  3. L. Wang, G. Yang, S. Peng et al., Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity. Int. J. Hydrog. Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.08.194

    Article  Google Scholar 

  4. K. Wakino, Recent development of dielectric resonator materials and filters in japan. Integr. Circuits Wirel. Commun. (1998). https://doi.org/10.1109/9780470544952.ch7

    Article  Google Scholar 

  5. K.P. Surendran, A. Wu, P.M. Vilarinho, V.M. Ferreira, Ni and Zn doped MgTiO3 thin films: structure, microstructure, and dielectric characteristics. J. Appl. Phys. (2010). https://doi.org/10.1063/1.3356938

    Article  Google Scholar 

  6. H.T. Kim, S. Nahm, J.D. Byun, Y. Kim, Low-fired (Zn, Mg)TiO3 microwave dielectrics. J. Am. Ceram. Soc. 82, 3476–3480 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02268.x

    Article  CAS  Google Scholar 

  7. P. Gogoi, L.R. Singh, D. Pamu, Characterization of Zn doped MgTiO3 ceramics: an approach for RF capacitor applications. J. Mater. Sci. Mater. Electron. 28, 11712–11721 (2017). https://doi.org/10.1007/s10854-017-6975-6

    Article  CAS  Google Scholar 

  8. L. Li, Z. Gao, Q. Ren et al., Effect of Zn-excess on sintering behavior and microwave dielectric properties in Mg0.97Zn0.03TiO3 ceramics. J. Alloys Compd. 617, 841–844 (2014). https://doi.org/10.1016/j.jallcom.2014.08.085

    Article  CAS  Google Scholar 

  9. T.S. Kumar, P. Gogoi, S. Thota, D. Pamu, Structural and dielectric studies of Co doped MgTiO3 thin films fabricated by RF magnetron sputtering. AIP Adv. (2014). https://doi.org/10.1063/1.4886379

    Article  Google Scholar 

  10. T.S. Kumar, P. Gogoi, S. Bhasaiah et al., Structural, optical and microwave dielectric studies of Co doped MgTiO3 thin films fabricated by RF magnetron sputtering. Mater. Res. Express (2015). https://doi.org/10.1088/2053-1591/2/5/056403

    Article  Google Scholar 

  11. T. Santhosh Kumar, P. Gogoi, A. Perumal et al., Effect of cobalt doping on the structural, microstructure and microwave dielectric properties of MgTiO3 ceramics prepared by semi alkoxide precursor method. J. Am. Ceram. Soc. 97, 1054–1059 (2014). https://doi.org/10.1111/jace.12851

    Article  CAS  Google Scholar 

  12. A. Manan, D.N. Khan, A. Ullah, Synthesis and microwave dielectric properties of (1–x)Mg0.95Ni0.05Ti0.98Zr0.02O3–xSrTiO3 ceramics. J. Mater. Sci. Mater. Electron. 26, 2066–2069 (2015). https://doi.org/10.1007/s10854-014-2648-x

    Article  CAS  Google Scholar 

  13. T. Sugiyama, T. Tsunooka, K.I. Kakimoto, H. Ohsato, Microwave dielectric properties of forsterite-based solid solutions. J. Eur. Ceram. Soc. 26, 2097–2100 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.102

    Article  CAS  Google Scholar 

  14. R.P. Liferovich, R.H. Mitchell, Mn, Mg, and Zn ilmenite group titanates: A reconnaissance rietveld study. Crystallogr. Rep. 51, 383–390 (2006). https://doi.org/10.1134/S1063774506030047

    Article  CAS  Google Scholar 

  15. Y. Hou, W. Zheng, Z. Wu et al., Study of Mn absorption by complex oxide inclusions in [Formula presented] killed steels. Acta Mater. 118, 8–16 (2016). https://doi.org/10.1016/j.actamat.2016.07.027

    Article  CAS  Google Scholar 

  16. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015). https://doi.org/10.1179/1743280415Y.0000000007

    Article  CAS  Google Scholar 

  17. H. Zhou, J. Huang, X. Tan et al., Thermal stability, phase composition and microwave dielectric properties of (3MgO–Al2O3–3TiO2)–CaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 28, 17009–17013 (2017). https://doi.org/10.1007/s10854-017-7623-x

    Article  CAS  Google Scholar 

  18. R. Cao, X. Cheng, F. Zhang et al., Enhanced luminescence properties of MgTO3:Mn4+ red-emitting phosphor by adding Ge4+ ion and H3BO3. J. Mater. Sci. Mater. Electron. 29, 13005–13010 (2018). https://doi.org/10.1007/s10854-018-9421-5

    Article  CAS  Google Scholar 

  19. C.H. Hsu, C.H. Chang, A temperature-stable and high-Q microwave dielectric ceramic of the MgTiO3-(Ca0.8Sr0.2)(Zr0.1Ti0.9)O3 system. Ceram. Int. 41, 6965–6969 (2015). https://doi.org/10.1016/j.ceramint.2015.01.152

    Article  CAS  Google Scholar 

  20. C.L. Huang, K.H. Chiang, Structures and dielectric properties of a new dielectric material system xMgTiO3-(1–x)MgTa2O6 at microwave frequency. J. Alloys Compd. 431, 326–330 (2007). https://doi.org/10.1016/j.jallcom.2006.05.088

    Article  CAS  Google Scholar 

  21. M.K. Suresh, J.K. Thomas, H. Sreemoolanadhan et al., Synthesis of nanocrystalline magnesium titanate by an auto-igniting combustion technique and its structural, spectroscopic and dielectric properties. Mater. Res. Bull. 45, 761–765 (2010). https://doi.org/10.1016/j.materresbull.2010.03.019

    Article  CAS  Google Scholar 

  22. M.K. Suresh, J.K. Thomas, H. Sreemoolanadhan et al., Structural and dielectric studies of nanocrystalline calcium substituted magnesium titanate synthesized through an auto-igniting combustion technique. Int. J. Appl. Ceram. Technol. 9, 366–373 (2012). https://doi.org/10.1111/j.1744-7402.2011.02672.x

    Article  CAS  Google Scholar 

  23. Y. Yamada, K. Wada, I. Kagomiya et al., Soft-chemical reaction of layered perovskite Na2Nd2Ti3O10 and its microwave dielectric properties. J. Eur. Ceram. Soc. 27, 3049–3052 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.028

    Article  CAS  Google Scholar 

  24. A. Salomon, C. Voigt, O. Fabrichnaya et al., Formation of Corundum, Magnesium Titanate, and Titanium(III) oxide at the interface between rutile and molten Al or AlSi7Mg0.6 Alloy. Adv. Eng. Mater. 19, 1 (2017). https://doi.org/10.1002/adem.201700106

    Article  CAS  Google Scholar 

  25. H. Son, R.S.S. Maki, B. Kim, Y. Suzuki, High-strength pseudobrookite-type MgTi2O5 by spark plasma sintering. J. Ceram. Soc. Jpn. 12, 838–840 (2016)

    Article  Google Scholar 

  26. S.H. Shim, B.G. Choi, J.W. Yoon et al., Microwave characteristics of MgTiO3-CaTiO3 dielectric ceramics fabricated using spark plasma sintering. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 44, 5073–5075 (2005)

    Article  CAS  Google Scholar 

  27. S. Filipović, N. Obradović, V.B. Pavlović et al., Influence of mechanical activation on microstructure and crystal structure of sintered MgO-TiO2 system. Sci. Sinter. 42, 143–151 (2010). https://doi.org/10.2298/SOS100518002F

    Article  CAS  Google Scholar 

  28. Z. Tao, Y. Zhang, Z. Yang et al., Preparation of MgTiO3 ceramics by high energy ball milling. J. Wuhan Univ. Technol. Mater. Sci. Ed. 21, 116–119 (2006). https://doi.org/10.1007/BF02840897

    Article  CAS  Google Scholar 

  29. T. Santhosh Kumar, R.K. Bhuyan, D. Pamu, Effect of post annealing on structural, optical and dielectric properties of MgTiO3 thin films deposited by RF magnetron sputtering. Appl. Surf. Sci. 264, 184–190 (2013). https://doi.org/10.1016/j.apsusc.2012.09.168

    Article  CAS  Google Scholar 

  30. M. Suzuki, H. Ohsato, K.I. Kakimoto et al., Crystal structure and microwave dielectric properties of (Ba1-αSrα)6–3x Sm8+2xTi18O54 solid solutions. J. Eur. Ceram. Soc. 26, 2035–2038 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.086

    Article  CAS  Google Scholar 

  31. S. Ke, H. Huang, H. Fan et al., Structural and electric properties of barium strontium titanate based ceramic composite as a humidity sensor. Solid State Ion. 179, 1632–1635 (2008). https://doi.org/10.1016/j.ssi.2007.12.014

    Article  CAS  Google Scholar 

  32. M.M. Costa, G.F.M. Pires Júnior, A.S.B. Sombra, Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite (Ba2Co2Fe12O22 (Co2Y)). Mater. Chem. Phys. 123, 35–39 (2010). https://doi.org/10.1016/j.matchemphys.2010.03.026

    Article  CAS  Google Scholar 

  33. R.P. Liferovich, R.H. Mitchell, Geikielite-ecandrewsite solid solutions: Synthesis and crystal structures of the Mg1-xZnxTiO3 (0 ≤ x ≤ 0.8) series. Acta Crystallogr. Sect. B Struct. Sci. 60, 496–501 (2004). https://doi.org/10.1107/S0108768104017963

    Article  CAS  Google Scholar 

  34. V.M. Ferreira, J.L. Baptista, S. Kamba, J. Petzelt, Dielectric spectroscopy of MgTiO3-based ceramics in the 109–1014Hz region. J. Mater. Sci. 28, 5894–5900 (1993). https://doi.org/10.1007/BF00365198

    Article  CAS  Google Scholar 

  35. H.J. Jo, J.S. Kim, E.S. Kim, Microwave dielectric properties of MgTiO3-based ceramics. Ceram. Int. 41, S530–S536 (2015). https://doi.org/10.1016/j.ceramint.2015.03.142

    Article  CAS  Google Scholar 

  36. C.H. Wang, X.P. Jing, W. Feng, J. Lu, Assignment of Raman-active vibrational modes of MgTiO3. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2966717

    Article  Google Scholar 

  37. A. Sakai, G. Anzou, A. Kikuchi, O. Seri, Raman scattering study of microcrystals of perovskite titanates. Ferroelectrics 512, 45–51 (2017). https://doi.org/10.1080/00150193.2017.1355159

    Article  CAS  Google Scholar 

  38. E.A.V. Ferri, T.M. Mazzo, V.M. Longo et al., Very intense distinct blue and red photoluminescence emission in MgTiO3 thin films prepared by the polymeric precursor method: an experimental and theoretical approach. J. Phys. Chem. C 116, 15557–15567 (2012). https://doi.org/10.1021/jp3021535

    Article  CAS  Google Scholar 

  39. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73, 348–366 (1993). https://doi.org/10.1063/1.353856

    Article  CAS  Google Scholar 

  40. C.M. Kanamadi, S.R. Kulkarni, K.K. Patankar et al., Magnetoelectric and dielectric properties of Ni0.5Cu0.5Fe2O4-Ba0.5Pb0.5Ti0.5Zr0.5O3 ME composites. J. Mater. Sci. 42, 5080–5084 (2007). https://doi.org/10.1007/s10853-006-0594-6

    Article  CAS  Google Scholar 

  41. B. Sundarakannan, K. Kakimoto, H. Ohsato, Frequency and temperature dependent dielectric and conductivity behavior of KNbO3 ceramics. J. Appl. Phys. 94, 5182–5187 (2003). https://doi.org/10.1063/1.1610260

    Article  CAS  Google Scholar 

  42. J. Singh, S. Bahel, (BaxMg1-x) (Ti0.95Sn0.05)O3 (x = 0.025, 0.05, 0.075 and 0.1) solid solutions as effective Ku-band (12.4–18 GHz) shielders. Ceram Int 46, 15206–15213 (2020). https://doi.org/10.1016/j.ceramint.2020.03.057

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the Ministry of Electronics and Information Technology (MeitY), Government of India. [Grant No.: MEITY-PHD-2742].

Author information

Authors and Affiliations

Authors

Contributions

KS: Synthesis and Characterization, Software, Data Analysis, Writing. SB: Review, edit, and supervised the whole manuscript.

Corresponding author

Correspondence to Shalini Bahel.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Bahel, S. Structural, dielectric and reflection analysis of ZnxMg1−xTiO3 ceramics synthesized using auto-ignition combustion method. J Mater Sci: Mater Electron 32, 27216–27231 (2021). https://doi.org/10.1007/s10854-021-07088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07088-7

Navigation