Skip to main content
Log in

Computer-aided study and multivariate optimization of nanomolar metformin hydrochloride analysis using molecularly imprinted polymer electrochemical sensor based on silver nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research project, a selective and sensitive sensor was electrochemically designed to measure metformin hydrochloride (MET) based on molecularly imprinted polymer (MIP). To prepare the sensor, the polypyrrole was electrochemically synthesized on a pencil graphite electrode (PGE), which modified with silver nanoparticles (AgNPs). Cyclic voltammetry and differential pulse voltammetry techniques were performed to fabricate the sensor and quantitative measurements, respectively. To select the functional monomers, a computational method was used. Some critical factors controlling the performance of the MIP–AgNPs–PGE were optimized using Plackett–Burman design and central composite design methods. Under optimal conditions, a calibration curve was obtained in the range 0.1–1000 µM with a limit of detection of 6.8 nM (S/N = 3, n = 3) and limit of quantitation of 22.8 nM (S/N = 10, n = 3). RSD of 3.9 and 4.1% were obtained for repeatability and reproducibility of the system, respectively. Furthermore, the modified sensor was successfully used for the determination of MET concentration in some real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.A. Siddiqui, N. Sher, N. Shafi, S.S. Bahadur, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2013.11.035

    Article  Google Scholar 

  2. E.M. Migdadi, A.J. Courtenay, I.A. Tekko, M.T.C. McCrudden, M.-C. Kearney, E. McAlister, H.O. McCarthy, R.F. Donnelly, JCR (2018). https://doi.org/10.1016/j.jconrel.2018.07.009

    Article  Google Scholar 

  3. H.M. Maher, A.E. Abdelrahman, N.Z. Alzoman, H.I. Aljohar, J. Liq. Chromatogr. Relat. Technol. (2019). https://doi.org/10.1080/10826076.2019.1590208

    Article  Google Scholar 

  4. M. Hadi, H. Poorgholi, H. Mostaanzadeh, S. Afr. J. Chem. (2016). https://doi.org/10.17159/0379-4350/2016/v69a16

    Article  Google Scholar 

  5. R. Mirzajani, S. Karimi, Sens. Actuators B (2018). https://doi.org/10.1016/j.snb.2018.05.032

    Article  Google Scholar 

  6. A. Sarafraz-Yazdi, N. Razavi, TrAC Trends Anal. Chem. (2015). https://doi.org/10.1016/j.trac.2015.05.004

    Article  Google Scholar 

  7. M. Sundhoro, S.R. Agnihotra, B. Amberger, K. Augustus, N.D. Khan, A. Barnes, J. BelBruno, L. Mendecki, Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2020.128648

    Article  Google Scholar 

  8. M. Zarejousheghani, P. Rahimi, H. Borsdorf, S. Zimmermann, Y. Joseph, Sensors (2021). https://doi.org/10.3390/s21072406

    Article  Google Scholar 

  9. A. Nezhadali, S. Senobari, M. Mojarab, Talanta (2016). https://doi.org/10.1016/j.talanta.2015.09.016

    Article  Google Scholar 

  10. L. Fang, Y. Miao, D. Wei, Y. Zhang, Y. Zhou, Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2020.128032

    Article  Google Scholar 

  11. G.F. Abu-Alsoud, C.S. Bottaro, Talanta (2021). https://doi.org/10.1016/j.talanta.2020.121727

    Article  Google Scholar 

  12. J. Wang, R. Liang, W. Qin, Trends Analyt Chem. (2020). https://doi.org/10.1016/j.trac.2020.115980

    Article  Google Scholar 

  13. I. Sadriu, S. Bouden, J. Nicolle, F.I. Podvorica, V. Bertagna, C. Berho, L. Amalric, C. Vautrin-Ul, Talanta (2020). https://doi.org/10.1016/j.talanta.2019.120222

    Article  Google Scholar 

  14. S. Piletsky, F. Canfarotta, A. Poma, A.M. Bossi, S. Piletsky, Trends Biotechnol. (2020). https://doi.org/10.1016/j.tibtech.2019.10.002

    Article  Google Scholar 

  15. A. Nezhadali, G. Bonakdar Ahmadi, J. Food Drug Anal. (2019). https://doi.org/10.1016/j.jfda.2018.05.002

    Article  Google Scholar 

  16. N. Karimian, M.B. Gholivand, F. Taherkhani, J. Electroanal. Chem. (2015). https://doi.org/10.1016/j.jelechem.2014.12.024

    Article  Google Scholar 

  17. S. Suryana, M. Yudi Rosandi, A. Nur Hasanah, Molecules (2021). https://doi.org/10.3390/molecules26071891

    Article  Google Scholar 

  18. A. Nezhadali, M. Mojarab, Anal. Chim. Acta. (2016). https://doi.org/10.1016/j.aca.2016.04.017

    Article  Google Scholar 

  19. A. Nezhadali, S. Sadeghzadeh, J. Electroanal. Chem. (2017). https://doi.org/10.1016/j.jelechem.2017.04.032

    Article  Google Scholar 

  20. A. Nezhadali, Z. Rouki, M. Nezhadali, Talanta (2015). https://doi.org/10.1016/j.talanta.2015.06.082

    Article  Google Scholar 

  21. M.C. Fonseca, C.S. Nascimento Jr., K.B. Borges, Chem. Phys. Lett. (2016). https://doi.org/10.1016/j.cplett.2015.12.061

    Article  Google Scholar 

  22. R. Yu, H. Zhou, M. Li, Q. Song, J. Electroanal. Chem. (2019). https://doi.org/10.1016/j.jelechem.2018.10.043

    Article  Google Scholar 

  23. A. Wong, M.V. Foguel, S. Khan, F.M. de Oliveira, C.R.T. Tarley, M.D.P.T. Sotomayor, Electrochim. Acta. (2015). https://doi.org/10.1016/j.electacta.2015.09.054

    Article  Google Scholar 

  24. A. Nezhadali, R. Shadmehri, Sens. Actuators B (2014). https://doi.org/10.1016/j.snb.2014.04.094

    Article  Google Scholar 

  25. M.I. Blonk, B.V.C. Ander Nagel, L.S. Smit, R.A.A. Mathod, J. Chromatogr. B (2010). https://doi.org/10.1016/j.jchromb.2010.01.037

    Article  Google Scholar 

  26. A. Safavi, N. Maleki, F. Tajabadi, Analyst (2007). https://doi.org/10.1039/B612672C

    Article  Google Scholar 

  27. D. Chen, J. Deng, J. Liang, J. Xie, K. Huang, C. Hu, Anal. Methods (2013). https://doi.org/10.1039/C2AY25897H

    Article  Google Scholar 

  28. A.K. Attia, W.M. Salem, M.A. Mohamed, Acta Chim. Slov. (2015). https://doi.org/10.17344/acsi.2014.950

    Article  Google Scholar 

  29. A.A. Ahmad, B.H. Hameed, A.L. Ahmad, J. Hazard. Mater. (2009). https://doi.org/10.1016/j.jhazmat.2009.05.021

    Article  Google Scholar 

  30. A. Gorska, B. Paczosa-Bator, J. Wyrwa, R. Piech, Electroanalysis (2020). https://doi.org/10.1002/elan.202060012

    Article  Google Scholar 

  31. Y. Altunkaynak, Ö. Yavuz, A. Levent, J. Indian Chem. Soc. 170, 106653 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Payame Noor University (PNU) Research Council for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azizollah Nezhadali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezhadali, A., Khalili, Z. Computer-aided study and multivariate optimization of nanomolar metformin hydrochloride analysis using molecularly imprinted polymer electrochemical sensor based on silver nanoparticles. J Mater Sci: Mater Electron 32, 27171–27183 (2021). https://doi.org/10.1007/s10854-021-07084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07084-x

Navigation