Skip to main content

Advertisement

Log in

Development of nanoparticles based electrode to expound the instantaneous sensing of hazardous phenol compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The zinc oxide (ZnO) is a highly influential material and exhibits versatile properties, which enables for various applications such as electronic, catalyst, solar cells, hydrogen fuels, and energy evolution. Although the materials exhibit versatile applications in various direction but limited studies are available to detect the sensing ability against environmental hazardous materials. The current work empathizes the application of zinc oxide nanoparticles (ZnO-NPs) as a sensor material to analyze the phenol (PhOH), which is a harmful industrial compound. The ZnO-NPs were synthesized via solution process and characterized with using XRD, SEM, FESEM, TEM, and FTIR spectroscopy. The NPs were employed as an electron moderator to sense the PhOH via electrochemical sensing process. The ZnO-NPs were pasted as a film form on specified glassy carbon electrode (GCE) to make their sensing efficiency with three electrode system. The ZnO-NPs/GCE-based electrode efficiency was evaluated with varied concentrations (7.8, 15.62, 31.25, 62.25, 250, 500, and 1000 μM/100 mL PBS) of PhOH in PBS, whereas the effect of potentials (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mV) were also verified. The electrochemical impedance (EIS) was also measured and it reveals that the electron transfer rate at electrode interface. The electrode resistance charge transfer (Rct) values, which are dependent on the concentration of utilized material, is directly proportional to the PhOH concentration. These values shows that the NPs exhibit more active and catalytic properties. The electrode was also checked in terms of their stability conditions for seven consecutive cycles and also the reproducibility was investigated for first and after 30 days with same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.Mainali, Phenolic Compounds Contaminants in Water: A Glance. Cur Trends Civil & Struct Eng 4(4)(2020) CTCSE.MS.ID.000593

  2. I. Michael-Kordatou, C. Michael, X. Duan, X. He, D.D. Dionysiou, M.A. Mills, D. Fatta-Kassinos, Dissolved effluent organic matter: characteristics and potential implications in wastewater treatment and reuse applications. Water Res. 77, 213–248 (2015)

    Article  CAS  Google Scholar 

  3. C. Campanale, C. Massarelli, I. Savino, V. Locaputo, V.F. Uricchio, A detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health 17, 1212 (2020)

    Article  CAS  Google Scholar 

  4. B.R. Albuquerque, S.A. Heleno, M.B.P.P. Oliveira, L. Barros, I.C.F.R. Ferreira, Phenolic compounds: current industrial applications, limitations and future Chall-enges. Food Funct. 12, 14–29 (2021)

    Article  CAS  Google Scholar 

  5. C. Jimenez-Lopez, M. Fraga-Corral, M. Carpena, P. García-Oliveira, J. Echave, A.G. Pereira, C. Lourenço-Lopes, M.A. Prieto, J. Simal-Gandara, Food Funct 11, 4853–4877 (2020)

    Article  CAS  Google Scholar 

  6. A.I. Kalogianni, T. Lazou, I. Bossis, A.I. Gelasakis, Natural phenolic compounds for the control of oxidation. Bacterial Spoilage, and Food borne Pathogens in Meat, Foods 9, 794 (2020)

    CAS  Google Scholar 

  7. R. Bodoira, D. Maestri, Phenolic compounds from nuts: extraction, chemical profiles, and bioactivity. J. Agric. Food Chem 68(4), 927–942 (2020)

    Article  CAS  Google Scholar 

  8. S. Zhang, B. Li, X. Wang, G. Zhao, B. Hu, Z. Lu, T. Wen, J. Chen, X. Wang, Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chem. Engg. J. 390, e124642 (2020)

    Article  CAS  Google Scholar 

  9. G. Shui, L.P. Leong, Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. J. Chromatography A 977(1), 89–96 (2002)

    Article  CAS  Google Scholar 

  10. Y.Q. Cai, Y.E. Cai, S.F. Mou, Y.Q. Lu, Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J. Chromatogr. A 1081(2), 245–247 (2005)

    Article  CAS  Google Scholar 

  11. M. Faraji, F. Noormohammadi, M. Adeli, Preparation of a ternary deep eutectic solvent as extraction solvent for dispersive liquid-liquid microextraction of nitrophenols in water samples. J. Environmental Chem Engg 8(4), e103948 (2020)

    Article  CAS  Google Scholar 

  12. M. Czerny, R. Brueckner, E. Kirchhoff, R. Schmitt, A. Buettner, The influence of molecular structure on odor qualities and odor detection thresholds of volatile alkylated phenols. Chem. Senses 36(6), 539–553 (2011)

    Article  CAS  Google Scholar 

  13. M.A.J. Harrison, S. Barra, D. Borghesi, D. Vione, C. Arsene, R. Olariu, Nitrated phenols in the atmosphere: a review. Atmos. Environ. 39(2), 231–248 (2005)

    Article  CAS  Google Scholar 

  14. R.J. Mayorga, Z.Z.H. Zhang, Formation of secondary organic aerosol from nitrate radical oxidation of phenolic VOCs: implications for nitration mechanisms and brown carbon formation. Atmos. Environ. 244, e117910 (2021)

    Article  CAS  Google Scholar 

  15. M. Li, X. Wang, C. Lu, R. Li, J. Zhang, S. Dong, L. Yang, L. Xue, J. Chen, W. Wang, Nitrated phenols and the phenolic precursors in the atmosphere in urban Jinan. China. Sci. The Total Environ. 714, e136760 (2020)

    Article  CAS  Google Scholar 

  16. T.T. Nguyen, C. Rosello, R. Bélanger, C. Ratti, Fate of residual pesticides in fruit and vegetable waste (FVW) processing. Foods 9, 1468 (2020)

    Article  CAS  Google Scholar 

  17. P.R. Sarika, P. Nancarrow, A. Khansaheb, T. Ibrahim, Bio-based alternatives to phenol and formaldehyde for the production of resins. Polymers 12, 2237 (2020)

    Article  CAS  Google Scholar 

  18. N. Chikhradze, M. Nadirashvili, S. Khomeriki, I. Varshanidze, The synthesis of phenyl acetylene phenols for development of new explosives. IOP Conf. Ser Earth Environ. Sci. 95, e042030 (2017)

    Google Scholar 

  19. K. Rantsiou, S. Giacosa, M. Pugliese, V. Englezos, I. Ferrocino, S.R. Segade, M. Mon chiero, I. Gribaudo, G. Gambino, M.L. Gullino and L. Rolle, , Impact of chemical and alternative fungicides applied to grapevine cv nebbiolo on microbial ecology and chemical-physical grape characteristics at harvest. Front. Plant Sci 11, e700 (2020)

    Article  Google Scholar 

  20. B. Guzelciftci, K.B. Park, J.S. Kim, Production of phenol-rich bio-oil via a two-stage pyrolysis of wood. Energy 200, e117536 (2020)

    Article  CAS  Google Scholar 

  21. C. Bettiol, S.D. Vettori, G. Minervini, E. Zuccon, D. Marchetto, A.V. Ghirardini, E. Argese, Assessment of phenolic herbicide toxicity and mode of action by different assays. Environ. Sci. Pollut. Res. 23, 7398–7408 (2016)

    Article  CAS  Google Scholar 

  22. R. Pavela, Insecticidal properties of phenols on Culex quinquefasciatus Say and Musca domestica L. Parasitol Res 109(6), 1547–1553 (2011)

    Article  Google Scholar 

  23. B.M. Mareai, M. Fayed, S.A. Aly, W.I. Elbarki, Performance comparison of phenol removal in pharmaceutical wastewater by activated sludge and extended aeration augmented with activated carbon. Alex. Eng. J. 59(6), 5187–5196 (2020)

    Article  Google Scholar 

  24. E.M. Abou-Taleb, M.S. Hellal, K.H. Kamal, Electro-oxidation of phenol in petroleum wastewater using a novel pilot-scale electrochemical cell with graphite and stainless-steel electrodes. Water Environ. J. 35(1), 259–268 (2021)

    Article  CAS  Google Scholar 

  25. S. Dabbou, K. Lahbib, G. Pandino, S. Dabbou, S. Lombardo, Evaluation of pigments, phenolic and volatilecompounds, and antioxidant activity of a spontaneous population of Portulaca oleracea L. Grown in Tunisia, Agriculture 10, 353 (2020)

    Article  CAS  Google Scholar 

  26. J.K.Adu, C.D.K.Amengor, N.M.Ibrahim, C.A.Danquah, C.O.Ansah, D.D.Gbadago, and J.S.Agyapong, Synthesis and In Vitro Antimicrobial and Anthelminthic Evaluation of Naphtholic and Phenolic Azo Dyes, J.Tropical Medicine, Article ID 4850492 (2020).

  27. K.H. Hong, Phenol compounds treated cotton and wool fabrics for developing multi-functional clothing materials. Fibers and Polymers 16(3), 565–571 (2015)

    Article  CAS  Google Scholar 

  28. X. Ouyang, X. Huang, M.D. Boot, E.J.M. Hensen, Efficient conversion of pine wood lignin to phenol. Chemsuschem 13(7), 1705–1709 (2020)

    Article  CAS  Google Scholar 

  29. M. Schwarzkopf, Densified wood impregnated with phenol resin for reduced set-recovery. Wood Mat. Sci. Eng. 16(1), 35–41 (2021)

    Article  CAS  Google Scholar 

  30. L. Lin, W. Jiang, L. Chen, P. Xu, H. Wang, Treatment of produced water with photo- catalysis: recent advances. Affect. Factors and Future Res. Prospects, Catalysts 10, 924 (2020)

    CAS  Google Scholar 

  31. R. Wahab, N. Ahmad, M. Alam, Silicon nanoparticles: a new and enhanced operational material for nitrophenol sensing. J. Mater Sci: Mater Electron 31, 17084–17099 (2020)

    CAS  Google Scholar 

  32. L. Lucaccioni, V. Trevisani, L. Marrozzini, N. Bertoncelli, B. Predieri, L. Lugli, A. Berardi, L. Iughetti, Endocrine-disrupting chemicals and their effectsduring female puberty: a review of current evidence. Int. J. Mol. Sci. 21, 2078 (2020)

    Article  CAS  Google Scholar 

  33. I. Manisalidis, E. Stavropoulou, A. Stavropoulos, E. Bezirtzoglou, Environmental and health impacts of air pollution: a review. Front Public Health 8, 14 (2020)

    Article  Google Scholar 

  34. N. Wang, Y. Choi, Challenges for sustainable water use in the urban industry of Korea based on the global non-radial directional distance function model. Sustainability 11, 3895 (2019)

    Article  Google Scholar 

  35. Z. Kyselova, Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip Toxicol 4(4), 173–183 (2011)

    Article  CAS  Google Scholar 

  36. M. Antolovich, P. Prenzler, K. Robards, D. Ryana, Sample preparation in the determination of phenolic compounds in fruits. Analyst 125, 989–1009 (2000)

    Article  CAS  Google Scholar 

  37. S.R. Ostrowski, S. Wilbur, C.H.S.J. Chou, H.R. Pohl, Y.W. Stevens, P.M. Allred, N. Roney, M. Fay, C.A. Tylenda, Agency for Toxic Substances and Disease Registry’s 1997 priority list of hazardous substances. Latent effects—carcinogenesis, Neuro toxicology, and developmental deficits in humans and animals. Toxicol. Ind. Health 15, 602–644 (1999)

    Article  CAS  Google Scholar 

  38. O. López-Fernández, R. Domínguez, M. Pateiro, P.E.S. Munekata, G. Rocchetti, J.M. Lorenzo, Determination of polyphenols using liquid chromatography-tandem mass spectrometry technique (LC–MS/MS): a review. Antioxidants (Basel) 9(6), 479 (2020)

    Article  CAS  Google Scholar 

  39. L. Mizzi, C. Chatzitzika, R. Gatt, V. Valdramidis, HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol. Biotechnol. 58(1), 12–19 (2020)

    Article  CAS  Google Scholar 

  40. V. Rahemi, S. Trashin, Z. Hafideddine, S.V. Doorslaer, V. Meynen, L. Gorton, K.D. Wael, Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase. Anal. Chem. 92(5), 3643–3649 (2020)

    Article  CAS  Google Scholar 

  41. R. Wahab, I.H. Hwang, Y.S. Kim, H.S. Shin, Photocatalytic activity of zinc oxide micro-flowers synthesized via solution method. Chem. Engg. J. 168, 359–366 (2011)

    Article  CAS  Google Scholar 

  42. R. Wahab, I.H. Hwang, Y.S. Kim, J. Musarrat, M.A. Siddiqui, H.K. Seo, S.K. Tripathy, H.S. Shin, Non-hydrolytic synthesis and photo-catalytic studies of ZnO nanoparticles. Chem. Engg. J. 175, 450–457 (2011)

    Article  CAS  Google Scholar 

  43. R. Wahab, Y.S. Kim, H.S. Shin, Fabrication, characterization and growth mechanism of heterostructured zinc oxide nanostructures via solution method. Curr. Appl. Phys. 11, 334–340 (2011)

    Article  Google Scholar 

  44. R. Wahab, S.G. Ansari, H.K. Seo, Y.S. Kim, E.K. Suh, H.S. Shin, Low temperature synthesis and characterization of rosette-like nanostructures of ZnO using solution process. Solid State Sci. 11, 439–443 (2009)

    Article  CAS  Google Scholar 

  45. R. Wahab, Y.S. Kim, H.S. Shin, Synthesis, characterization and effect of pH variation on zinc oxide nanostructures. Mater. Trans. 50(8), 2092–2097 (2009)

    Article  CAS  Google Scholar 

  46. R. Wahab, S.G. Ansari, Y.S. Kim, M.A. Dar, H.S. Shin, Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. J. Alloy. Compd. 461, 66–71 (2008)

    Article  CAS  Google Scholar 

  47. S.S. Rathnakumar, K. Noluthando, A.J. Kulandaiswamy, J.B.B. Rayappan, K. Kasinathan, J. Kennedy, M. Maaza, Stalling behaviour of chloride ions: a non-enzymatic electrochemical detection of α-Endosulfan using CuO interface, ensors & Actuators: B. Chemical 293, 100–106 (2019)

    CAS  Google Scholar 

  48. K. Kaviyarasu, E. Manikandan, M. Maaza, Synthesis of CdS flower-like hier- archical microspheres as electrode material for electrochemical performance. J. Alloy. Compd. 648, 559–563 (2015)

    Article  CAS  Google Scholar 

  49. A.M. Amanulla, C.M. Magdalane, S. Saranya, R. Sundaram, K. Kaviyarasu, Selectivity, stability and reproducibility effect of CeM-CeO2 modified PIGE electrode for photo electrochemical behaviour of energy application. Surfaces and Interfaces 22, e100835 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Researchers Supporting Project number (RSP-2021/113), King Saud University, Riyadh, Saudi Arabia for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Wahab.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, R., Ahmad, N. & Alam, M. Development of nanoparticles based electrode to expound the instantaneous sensing of hazardous phenol compound. J Mater Sci: Mater Electron 32, 27159–27170 (2021). https://doi.org/10.1007/s10854-021-07083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07083-y

Navigation