Skip to main content

Immobilization of ZnO thin films onto fibrous glass substrates via atomic layer deposition and investigation of photocatalytic activity

Abstract

Photocatalytic elimination of the toxic chemicals in water effluents is of interest as a green approach and surface area of the catalyst material is critical for high performance. Atomic layer deposition (ALD) provides a promising route to immobilize conformal thin film photocatalysts on the rough and high surface area substrates. In this study, very thin 10 nm of ZnO films were deposited on glass fabric substrate, and their photocatalytic activities were determined with and without post-processing annealing. After four hours of the solar simulator and UV lamp illuminations, the solutions with ZnO ALD films showed up to 97% degradation of the methylene blue in, faster than the films on planar substrates reported in the literature. With our proposed approach, a model contaminant is successfully cleaned quickly without the need to remove photocatalyst materials afterward. Reaction kinetics showed a first-order reaction for the photodegradation of the methylene blue in the presence of ZnO photocatalyst thin films. Structural and optical characterizations also showed that the defects play a significant role in the higher photocatalytic performance of the films explained by XRD, XPS, UV–Vis, and PL spectroscopy results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. R.P. Schwarzenbach, T. Egli, T.B. Hofstetter et al., Global water pollution and human health. Annu. Rev. Environ. Resour. 35, 109–136 (2010). https://doi.org/10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  2. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010). https://doi.org/10.1016/j.watres.2010.02.039

    CAS  Article  Google Scholar 

  3. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010

    CAS  Article  Google Scholar 

  4. L. Zhang, M. Fang, Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5, 128–142 (2010). https://doi.org/10.1016/j.nantod.2010.03.002

    CAS  Article  Google Scholar 

  5. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170, 520–529 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.039

    CAS  Article  Google Scholar 

  6. V.K. Gupta, I. Ali, T.A. Saleh et al., Chemical treatment technologies for wastewater recycling---an overview. RSC Adv. 2, 6380–6388 (2012). https://doi.org/10.1039/c2ra20340e

    CAS  Article  Google Scholar 

  7. K. Rajeshwar, M.E. Osugi, W. Chanmanee et al., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C 9, 171–192 (2008). https://doi.org/10.1016/j.jphotochemrev.2008.09.001

    CAS  Article  Google Scholar 

  8. H.M. Coleman, B.R. Eggins, J.A. Byrne et al., Photocatalytic degradation of 17-β-oestradiol on immobilised TiO2. Appl. Catal. B 24, 3–7 (2000). https://doi.org/10.1016/S0926-3373(99)00091-0

    Article  Google Scholar 

  9. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment II: hybrid methods. Adv. Environ. Res. 8, 553–597 (2004). https://doi.org/10.1016/S1093-0191(03)00031-5

    CAS  Article  Google Scholar 

  10. M.B. Johnson, M. Mehrvar, Aqueous metronidazole degradation by UV/H2O2 process in single-and multi-lamp tubular photoreactors: kinetics and reactor design. Ind. Eng. Chem. Res. 47, 6525–6537 (2008). https://doi.org/10.1021/ie071637v

    CAS  Article  Google Scholar 

  11. V. Dal Santo, A. Naldoni, Titanium dioxide photocatalysis. Catalysts 8, 591 (2018). https://doi.org/10.3390/catal8120591

    CAS  Article  Google Scholar 

  12. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 170, 560–569 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.064

    CAS  Article  Google Scholar 

  13. A. Fujishima, K. Honda, Biological sciences: one and two-dimensional structure of alpha-helix and beta-sheet forms of poly(L-Alanine) shown by specific heat measurements at low temperatures (1.5–20 K). Nature 238, 38–40 (1972). https://doi.org/10.1038/238038a0

    Article  Google Scholar 

  14. M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal oxides as photocatalysts. J. Saudi Chem. Soc. 19, 462–464 (2015). https://doi.org/10.1016/j.jscs.2015.04.003

    Article  Google Scholar 

  15. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13, 169–189 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    CAS  Article  Google Scholar 

  16. V. Jawale, G. Gugale, M. Chaskar et al. (2021) Two- and three-dimensional zinc oxide nanostructures and its photocatalytic dye degradation performance study. J. Mater. Res.  https://doi.org/10.1557/s43578-021-00174-w

  17. L. Zammouri, A. Aboulaich, B. Capoen et al., Synthesis of YAG:Ce/ZnO core/shell nanoparticles with enhanced UV–Visible and visible light photocatalytic activity and application for the antibiotic removal from aqueous media. J. Mater. Res. 34, 1318–1330 (2019). https://doi.org/10.1557/jmr.2019.25

    CAS  Article  Google Scholar 

  18. M.E. Borges, M. Sierra, E. Cuevas et al., Photocatalysis with solar energy: sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol. Energy 135, 527–535 (2016). https://doi.org/10.1016/j.solener.2016.06.022

    CAS  Article  Google Scholar 

  19. H.T. Chang, N.M. Wu, F. Zhu, A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO2 catalyst. Water Res. 34, 407–416 (2000). https://doi.org/10.1016/S0043-1354(99)00247-X

    Article  Google Scholar 

  20. J. Gao, S. Jia, J. Liu et al. (2021) Enhanced effect of adsorption and photocatalytics by TiO2 nanoparticles embedded porous PVDF nanofiber scaffolds. J. Mater. Res. https://doi.org/10.1557/s43578-021-00181-x

  21. C. Garzella, E. Comini, E. Tempesti et al., TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sens. Actuators B 68, 189–196 (2000). https://doi.org/10.1016/S0925-4005(00)00428-7

    CAS  Article  Google Scholar 

  22. J. Yu, X. Zhao, Q. Zhao, Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method. Mater. Chem. Phys. 69, 25–29 (2001). https://doi.org/10.1016/S0254-0584(00)00291-1

    CAS  Article  Google Scholar 

  23. S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films 392, 338–344 (2001). https://doi.org/10.1016/S0040-6090(01)01054-9

    CAS  Article  Google Scholar 

  24. L. Miao, P. Jin, K. Kaneko et al., Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by RF magnetron sputtering. Appl. Surf. Sci. 212–213, 255–263 (2003). https://doi.org/10.1016/S0169-4332(03)00106-5

    CAS  Article  Google Scholar 

  25. Y. Suda, H. Kawasaki, T. Ueda, T. Ohshima, Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture. Thin Solid Films 475, 337–341 (2005). https://doi.org/10.1016/j.tsf.2004.07.047

    CAS  Article  Google Scholar 

  26. I. Oja, A. Mere, M. Krunks et al., Structural and electrical characterization of TiO2 films grown by spray pyrolysis. Thin Solid Films 515, 674–677 (2006). https://doi.org/10.1016/j.tsf.2005.12.243

    CAS  Article  Google Scholar 

  27. S.M. Rossnagel, Thin film deposition with physical vapor deposition and related technologies. J. Vac. Sci. Technol. A 21, S74–S87 (2003). https://doi.org/10.1116/1.1600450

    CAS  Article  Google Scholar 

  28. D. Byun, Y. Jin, B. Kim et al., Photocatalytic TiO2 deposition by chemical vapor deposition. J. Hazard. Mater. 73, 199–206 (2000). https://doi.org/10.1016/S0304-3894(99)00179-X

    CAS  Article  Google Scholar 

  29. A. Ramirez-Canon, D.O. Miles, P.J. Cameron, D. Mattia, Zinc oxide nanostructured films produced via anodization: a rational design approach. RSC Adv. 3, 25323–25330 (2013). https://doi.org/10.1039/c3ra43886d

    CAS  Article  Google Scholar 

  30. H. Wu, Z. Zheng, Y. Tang et al., Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. Sustain. Mater. Technol. 18, e00075 (2018). https://doi.org/10.1016/j.susmat.2018.e00075

    CAS  Article  Google Scholar 

  31. H. Wu, Z. Zheng, C.Y. Toe et al., A pulse electrodeposited amorphous tunnel layer stabilises Cu2O for efficient photoelectrochemical water splitting under visible-light irradiation. J. Mater. Chem. A 8, 5638–5646 (2020). https://doi.org/10.1039/d0ta00629g

    CAS  Article  Google Scholar 

  32. R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17, 236–246 (2014). https://doi.org/10.1016/j.mattod.2014.04.026

    CAS  Article  Google Scholar 

  33. H.C. Guo, E. Ye, Z. Li et al., Recent progress of atomic layer deposition on polymeric materials. Mater. Sci. Eng. C 70, 1182–1191 (2017). https://doi.org/10.1016/j.msec.2016.01.093

    CAS  Article  Google Scholar 

  34. N.P. Dasgupta, X. Meng, J.W. Elam, A.B.F. Martinson, Atomic layer deposition of metal sulfide materials. Acc. Chem. Res. 48, 341–348 (2015). https://doi.org/10.1021/ar500360d

    CAS  Article  Google Scholar 

  35. J.S. Jur, W.J. Sweet, C.J. Oldham, G.N. Parsons, Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: conductivity analysis and functional chemical sensing using “all-fiber” capacitors. Adv. Funct. Mater. 21, 1993–2002 (2011). https://doi.org/10.1002/adfm.201001756

    CAS  Article  Google Scholar 

  36. H. Van Bui, F. Grillo, J.R. Van Ommen, Atomic and molecular layer deposition: off the beaten track. Chem. Commun. 53, 45–71 (2017). https://doi.org/10.1039/c6cc05568k

    Article  Google Scholar 

  37. G.K. Hyde, S.D. McCullen, S. Jeon et al. (2009) Atomic layer deposition and biocompatibility of titanium nitride nano-coatings on cellulose fiber substrates. Biomed. Mater.  https://doi.org/10.1088/1748-6041/4/2/025001

  38. J. Iqbal, A. Jilani, P.M. Ziaul Hassan et al., ALD grown nanostructured ZnO thin films: effect of substrate temperature on thickness and energy band gap. J. King Saudi Univ. 28, 347–354 (2016). https://doi.org/10.1016/j.jksus.2016.03.001

    Article  Google Scholar 

  39. Y. Sun, R.P. Padbury, H.I. Akyildiz et al., Influence of subsurface hybrid material growth on the mechanical properties of atomic layer deposited thin films on polymers. Chem. Vap. Depos. 19, 134–141 (2013). https://doi.org/10.1002/cvde.201207042

    CAS  Article  Google Scholar 

  40. H.I. Akyildiz, S. Diler, S. Islam, Evaluation of TiO2 and ZnO atomic layer deposition coated polyamide 66 fabrics for photocatalytic activity and antibacterial applications. J. Vac. Sci. Technol. A 39, 022405 (2021). https://doi.org/10.1116/6.0000761

    CAS  Article  Google Scholar 

  41. H. Kim, Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol. B 21, 2231 (2003). https://doi.org/10.1116/1.1622676

    CAS  Article  Google Scholar 

  42. S.E. Potts, W. Keuning, E. Langereis et al., Low temperature plasma-enhanced atomic layer deposition of metal oxide thin films. J. Electrochem. Soc. 157, P66 (2010). https://doi.org/10.1149/1.3428705

    CAS  Article  Google Scholar 

  43. J. Kim, H. Hong, S. Ghosh et al., Physical properties of highly conformal TiN thin films grown by atomic layer deposition. Jpn. J. Appl. Phys. Part 1 42, 1375–1379 (2003). https://doi.org/10.1143/jjap.42.1375

    CAS  Article  Google Scholar 

  44. C.H. Chao, C. Hsieh, W.J. Te, Ke et al., Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries. J. Power Sources 482, 228896 (2021). https://doi.org/10.1016/j.jpowsour.2020.228896

    CAS  Article  Google Scholar 

  45. D. Muñoz-Rojas, V.H. Nguyen, C. de la MasseHuerta et al., Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials. C. R. Phys. 18, 391–400 (2017). https://doi.org/10.1016/j.crhy.2017.09.004

    CAS  Article  Google Scholar 

  46. E. Guziewicz, I.A. Kowalik, M. Godlewski et al. (2008) Extremely low temperature growth of ZnO by atomic layer deposition. J. Appl. Phys.  https://doi.org/10.1063/1.2836819

  47. J.L. Tian, H.Y. Zhang, G.G. Wang et al., Influence of film thickness and annealing temperature on the structural and optical properties of ZnO thin films on Si (1 0 0) substrates grown by atomic layer deposition. Superlattices Microstruct. 83, 719–729 (2015). https://doi.org/10.1016/j.spmi.2015.03.062

    CAS  Article  Google Scholar 

  48. S. Ben Ameur, H. Bel hadjltaief, A. Barhoumi et al., Physical investigations and photocatalytic activities on ZnO and SnO2 thin films deposited on flexible polymer substrate. Vacuum 155, 546–552 (2018). https://doi.org/10.1016/j.vacuum.2018.05.051

    CAS  Article  Google Scholar 

  49. A.K. Singh, G.S. Thool, S.R. Deo et al., Synthesis and effect of post-deposition thermal annealing on morphological and optical properties of ZnO thin film. Res. Chem. Intermed. 38, 2041–2049 (2012). https://doi.org/10.1007/s11164-012-0524-y

    CAS  Article  Google Scholar 

  50. M. Polat Gonullu, M. Soyleyici Cergel, H.I. Efkere, H. Ates, Investigations of some physical properties of ALD growth ZnO films: effect of crystal orientation on photocatalytic activity. J. Mater. Sci. Mater. Electron. 32, 12059–12074 (2021). https://doi.org/10.1007/s10854-021-05835-4

    CAS  Article  Google Scholar 

  51. D. Aryanto, R.M. Maulana, T. Sudiro et al., Effect of post-thermal annealing on the structural of ZnO thin films deposited using sol–gel spin-coating method. AIP Conf. Proc. 1862, 3–6 (2017). https://doi.org/10.1063/1.4991149

    CAS  Article  Google Scholar 

  52. J.J. Ku-Herrera, F. Avilés, A. Nistal et al., Interactions between the glass fiber coating and oxidized carbon nanotubes. Appl. Surf. Sci. 330, 383–392 (2015). https://doi.org/10.1016/j.apsusc.2015.01.025

    CAS  Article  Google Scholar 

  53. D. Shah, D.I. Patel, T. Roychowdhury et al., Tutorial on interpreting x-ray photoelectron spectroscopy survey spectra: questions and answers on spectra from the atomic layer deposition of Al2O3 on silicon. J. Vac. Sci. Technol. B 36, 062902 (2018). https://doi.org/10.1116/1.5043297

    CAS  Article  Google Scholar 

  54. T.V. Larina, L.S. Dovlitova, V.V. Kaichev et al., Influence of the surface layer of hydrated silicon on the stabilization of CO2 + cations in Zr-Si fiberglass materials according to XPS, UV–Vis DRS, and differential dissolution phase analysis. RSC Adv. 5, 79898–79905 (2015). https://doi.org/10.1039/c5ra12551k

    CAS  Article  Google Scholar 

  55. Y.H. Wang, Q. Ma, L.L. Zheng et al., Performance improvement of atomic layer-deposited ZnO/Al2O3 thin-film transistors by low-temperature annealing in air. IEEE Trans. Electron Devices 63, 1893–1898 (2016). https://doi.org/10.1109/TED.2016.2540679

    CAS  Article  Google Scholar 

  56. J. Wang, Z. Wang, B. Huang et al., Oxygen vacancy induced bandgap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012). https://doi.org/10.1021/am300835p

    CAS  Article  Google Scholar 

  57. L. Jiang, J. Li, K. Huang et al., Low-temperature and solution-processable zinc oxide transistors for transparent electronics. ACS Omega 2, 8990–8996 (2017). https://doi.org/10.1021/acsomega.7b01420

    CAS  Article  Google Scholar 

  58. G. Malik, S. Mourya, J. Jaiswal, R. Chandra, Effect of annealing parameters on optoelectronic properties of highly ordered ZnO thin films. Mater. Sci. Semicond. Process. 100, 200–213 (2019). https://doi.org/10.1016/j.mssp.2019.04.032

    CAS  Article  Google Scholar 

  59. R. Al-Gaashani, S. Radiman, A.R. Daud et al., XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283–2292 (2013). https://doi.org/10.1016/j.ceramint.2012.08.075

    CAS  Article  Google Scholar 

  60. A. Di Mauro, M. Cantarella, G. Nicotra et al., Low temperature atomic layer deposition of ZnO: applications in photocatalysis. Appl. Catal. B 196, 68–76 (2016). https://doi.org/10.1016/j.apcatb.2016.05.015

    CAS  Article  Google Scholar 

  61. A. Galdámez-Martinez, G. Santana, F. Güell et al. (2020) Photoluminescence of ZnO nanowires: a review. Nanomaterials. https://doi.org/10.3390/nano10050857

  62. D. Saha, A.K. Das, R.S. Ajimsha et al., Effect of disorder on carrier transport in ZnO thin films grown by atomic layer deposition at different temperatures. J. Appl. Phys. 114, 2–7 (2013). https://doi.org/10.1063/1.4815941

    CAS  Article  Google Scholar 

  63. T. Padfield, S. Landi, The light-fastness of the natural dyes. Stud. Conserv. 11, 181–196 (1966)

    Google Scholar 

  64. Y.Q. Cao, J. Chen, H. Zhou et al. (2015) Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blue. Nanotechnology. https://doi.org/10.1088/0957-4484/26/2/024002

  65. Y. Cao, J. Chen, H. Zhou et al., Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin fi lms for the degradation of methylene blue.  https://doi.org/10.1088/0957-4484/26/2/024002

  66. V. Rogé, N. Bahlawane, G. Lamblin et al., Improvement of the photocatalytic degradation property of atomic layer deposited ZnO thin films: the interplay between film properties and functional performances. J. Mater. Chem. A 3, 11453–11461 (2015). https://doi.org/10.1039/c5ta01637a

    Article  Google Scholar 

  67. K. Park, G. Deok, B. Joon et al., Effects of atomic layer deposition conditions on the formation of thin ZnO films and their photocatalytic characteristics. Ceram. Int. 45, 18823–18830 (2019). https://doi.org/10.1016/j.ceramint.2019.06.115

    CAS  Article  Google Scholar 

  68. R. Peter, K. Salamon, A. Omerzu et al., Role of hydrogen-related defects in photocatalytic activity of ZnO films grown by atomic layer deposition. J. Phys. Chem. C (2020). https://doi.org/10.1021/acs.jpcc.0c01519

    Article  Google Scholar 

  69. A. Omerzu, D. Peter, Jardas et al., Large enhancement of photocatalytic activity in ZnO thin films grown by plasma-enhanced atomic layer deposition. Surf. Interfaces 23, 100984 (2021). https://doi.org/10.1016/j.surfin.2021.100984

    CAS  Article  Google Scholar 

  70. T. Tynell, M. Karppinen (2014) Atomic layer deposition of ZnO: a review. Semicond. Sci. Technol.  https://doi.org/10.1088/0268-1242/29/4/043001

  71. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    CAS  Article  Google Scholar 

  72. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi Basic Res. 252, 1700–1710 (2015). https://doi.org/10.1002/pssb.201552007

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the generous funding support for this study in part from Bursa Uludag University (Grant # TDAP(MH)-2019/2) and The Scientific and Technological Research Council of Turkey (TUBITAK) (Grant # 118M617 and 218M275).

Funding

This study was funded by The Scientific and Technological Research Council of Turkey (TUBITAK), (Grant # 118M617 and 218M275), Bursa Uludag University, (Grant # TDAP(MH)-2019/2).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Halil I. Akyildiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 168.4 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Akyildiz, H.I. Immobilization of ZnO thin films onto fibrous glass substrates via atomic layer deposition and investigation of photocatalytic activity. J Mater Sci: Mater Electron 32, 27027–27043 (2021). https://doi.org/10.1007/s10854-021-07075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07075-y