Skip to main content

Advertisement

Log in

Enhanced sensing performance toward alcohols using copper oxide based on exposed crystal facet driven catalytic oxidation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we have reported the CuO micro-polyhedrons with special exposed crystal facet, showing enhanced gas sensing performance based on improved catalytic activation of oxygen. The as-prepared CuO showed the uniform shapes of polyhedrons with the size of several micrometers and can be facilely controlled by simply adjusting the precipitants and heating steps. Then, the gas sensitive performance of CuO polyhedrons was evaluated toward typical alcohols at a working temperature of 235 °C. It showed a good sensitivity of n-butanol among several typical alcohols. Moreover, the response value of CuO-m3 (2.43) is significantly higher than that of CuO-m1 (1.92) and CuO-m2 (1.83), which is directly proportional to the exposure degree of (110) crystal facet of CuO. Analysis of mechanism showed that this crystal facet may have the best adsorption capacity of oxygen, thus more reactive oxygen can be generated via a catalytic oxidation process. Our work offered a kind of cheap oxide with exposed facet toward typical alcohols, which is very potential for the development of related industrial sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

No declaration.

References

  1. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10(6), 5469–5502 (2010)

    Article  CAS  Google Scholar 

  2. W. Tsujita, A. Yoshino, H. Ishida, T. Moriizumi, Gas sensor network for air-pollution monitoring. Sens. Actuators, B Chem. 110(2), 304–311 (2005)

    Article  CAS  Google Scholar 

  3. T. Das, S. Das, M. KarmaKar et al., Novel barium hexaferrite based highly selective and stable trace ammonia sensor for detection of renal disease by exhaled breath analysis. Sens. Actuators B: Chem. (2020). https://doi.org/10.1016/j.snb.2020.128765

    Article  Google Scholar 

  4. S.C. Jian, N. Singh, M.L. Singla, M. Singh et al., Experimental investigations of on-line fiber optic H2S gas sensor for industrial applications. J. Sci. Ind. Res. 58(5), 355–358 (1999)

    Google Scholar 

  5. R.A. Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 116(19), 11877–11923 (2016)

    Article  CAS  Google Scholar 

  6. X.R. Zhou, X.W. Cheng, Y.H. Zhu et al., Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 29(3), 405–416 (2018)

    Article  CAS  Google Scholar 

  7. A. Mirzaei, S.G. Leonardi, G. Neri et al., Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42(14), 15119–15141 (2016)

    Article  CAS  Google Scholar 

  8. D. Kwak, Y. Lei, R. Maric, Ammonia gas sensors: a comprehensive review. Talanta 204, 713–730 (2019)

    Article  CAS  Google Scholar 

  9. D. Hashoul, H. Haick, Sensors for detecting pulmonary diseases from exhaled breath. Eur. Respir. Rev. (2019). https://doi.org/10.1183/16000617.0011-2019

    Article  Google Scholar 

  10. Z.L. Qiu, Z.Q. Hua et al., Acetone sensing properties and mechanism of Rh-loaded WO3 nanosheets. Front. Chem. (2018). https://doi.org/10.3389/fchem.2018.00385

    Article  Google Scholar 

  11. G. Konvalina, H. Haick et al., Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 47(1), 66–67 (2014)

    Article  CAS  Google Scholar 

  12. A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 14(42), 15119–15141 (2016)

    Article  Google Scholar 

  13. M.P. Neupane, Y.K. Kim, I.S. Park et al., Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles. Surf. Interface Anal. 41(3), 259–263 (2009)

    Article  CAS  Google Scholar 

  14. C. Yang, X. Su, F. Xiao et al., Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method. Sens. Actuators, B Chem. 158(1), 299–303 (2011)

    Article  CAS  Google Scholar 

  15. J. Zhu, H. Bi, Y. Wang et al., CuO nanocrystals with controllable shapes grown from solution without any surfactants. Mater. Chem. Phys. 109(1), 34–38 (2008)

    Article  CAS  Google Scholar 

  16. W. Wang, Z. Liu, Y. Liu et al., A simple wet-chemical synthesis and characterization of CuO nanorods. Appl. Phys. A Mater. Sci. Process. 76(3), 417–420 (2003)

    Article  CAS  Google Scholar 

  17. Q.B. Zhang, K.L. Zhang, D.G. Xu, G.C. Yang, H. Huang et al., CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 60, 208–337 (2014)

    Article  CAS  Google Scholar 

  18. S. Park, S. Kim, H. Kheel, S.K. Hyun et al., Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor. Mater. Res. Bull. 82, 130–135 (2016)

    Article  CAS  Google Scholar 

  19. M. He, L.L. Xie, X.L. Zhao, X.B. Hu et al., Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/room temperature. J. Alloy. Compd. 788, 36–43 (2019)

    Article  CAS  Google Scholar 

  20. K.-R. Park, H.-B. Choa, J. Lee et al., Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens. Actuators B: Chem. 302, 127179 (2020)

    Article  CAS  Google Scholar 

  21. H. Kim, C. Jin, S. Park et al., H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sens. Actuators, B Chem. 161(1), 594–599 (2012)

    Article  CAS  Google Scholar 

  22. J.S. Lee, A. Katoch, J.H. Kim, S.S. Kim, Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires. Sens. Actuators, B Chem. 222, 307–314 (2016)

    Article  CAS  Google Scholar 

  23. J.Q. Xu, Z.G. Xue, N. Qin, Z.X. Cheng et al., The crystal facet-dependent gas sensing properties of ZnO nanosheets: Experimental and computational study. Sens. Actuators, B Chem. 242, 148–157 (2017)

    Article  CAS  Google Scholar 

  24. J.J. Liu, G. Chen, Y.G. Yu, Y.L. Wu et al., Controllable synthesis of In2O3 octodecahedra exposing 110 facets with enhanced gas sensing performance. RSC Adv. 5(55), 44306–44312 (2015)

    Article  CAS  Google Scholar 

  25. F. Li, Y.J. Chen, J.M. Ma, Porous SnO2 nanoplates for highly sensitive NO detection. J. Mater. Chem. A 20(2), 7175–7178 (2014)

    Article  Google Scholar 

  26. W. Guo, Q.Q. Feng, Y.F. Tao, L.J. Zheng, J.M. Ma et al., Systematic investigation on the gas-sensing performance of TiO2 nanoplate sensors for enhanced detection on toxic gases. Mater. Res. Bull. 73, 302–307 (2016)

    Article  CAS  Google Scholar 

  27. W.Q. Song, R. Zhang, X. Bai, Q.Q. Jia, H.M. Ji, Exposed crystal facets of WO3 nanosheets by phase control on NO2-sensing performance. J. Mater. Sci. Mater. Electron. 31(1), 610–620 (2019)

    Article  Google Scholar 

  28. Z.S. Fishman, B. Rudshteyn, Y. He et al., Fundamental role of oxygen stoichiometry in controlling the band gap and reactivity of cupric oxide nanosheets. J. Am. Chem. Soc. 138(34), 10978–10985 (2016)

    Article  CAS  Google Scholar 

  29. L. Hou, C.M. Zhang, L. Li, C. Du et al., CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: morphology and surface structure effects on the sensing performance. Talanta 188, 41–49 (2018)

    Article  CAS  Google Scholar 

  30. V. Oison, H. Ouali, C. Lambert-Mauriat, M. Freyss, Experimental and ab initio study of the O3 detection at the CuO (111) surface. Surf. Sci. 622, 44–50 (2014)

    Article  CAS  Google Scholar 

  31. M.L. Yin, S.Z. Liu, Synthesis of CuO microstructures with controlled shape and size and their exposed facets induced enhanced ethanol sensing performance. Sens. Actuators, B Chem. 227, 328–335 (2016)

    Article  CAS  Google Scholar 

  32. D.W. Su, X.Q. Xie, S.X. Dou, G.X. Wang, CuO single crystal with exposed 001 facets—a highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 4, 5753 (2014)

    Article  CAS  Google Scholar 

  33. L. Kang, M. Zhou, H. Zhou et al., Controlled synthesis of Cu2O microcrystals in membrane dispersion reactor and comparative activity in heterogeneous Fenton application. Powder Technol. 343, 847–854 (2019)

    Article  CAS  Google Scholar 

  34. S. Sun, X. Zhang, Q. Yang et al., Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater. Sci. 96, 111–173 (2018)

    Article  CAS  Google Scholar 

  35. S. Sun, D. Deng, C. Kong et al., Seed-mediated synthesis of polyhedral 50-facet Cu2O architectures. CrystEngComm 13(20), 5993–5997 (2011)

    Article  CAS  Google Scholar 

  36. S. Sun, X. Song, Y. Sun et al., The crystal-facet-dependent effect of polyhedral Cu2O microcrystals on photocatalytic activity. Catal. Sci. Technol. 2(5), 925–930 (2012)

    Article  CAS  Google Scholar 

  37. Q. Hua, D. Shang, W. Zhang et al., Morphological evolution of Cu2O nanocrystals in an acid solution: stability of different crystal planes. Langmuir 27(2), 665–671 (2011)

    Article  CAS  Google Scholar 

  38. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators, B Chem. 204, 250–272 (2014)

    Article  CAS  Google Scholar 

  39. N.S. Ramgir, S.K. Ganapathi, M. Kaur, N. Datta et al., Sub-ppm H2S sensing at room temperature using CuO thin films. Sens. Actuators, B Chem. 151, 90–96 (2010)

    Article  CAS  Google Scholar 

  40. J. Hu, D. Li, J.G. Lu et al., Effects on electronic properties of molecule adsorption on CuO surfaces and nanowires. J. Phys. Chem. C 114(40), 17120–17126 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge financially support by the National Natural Science Foundation of China as general projects (Grant Nos. 21872102 and 21906001).

Funding

The authors sincerely acknowledge financially support by the National Natural Science Foundation of China as general projects (grant Nos. 21872102 and 21906001).

Author information

Authors and Affiliations

Authors

Contributions

The research conception and design were completed by [ZS]. Material preparation, data collection and analysis were performed by [MZ], [FG] and [FD]. The first draft of the manuscript was written by [FG] and all authors commented on previous versions of the manuscript. Author [MZ] and author [FG] have equal contributions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhurui Shen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

No declaration.

Consent to participate

All authors agreed to participate.

Consent for publication

All authors agreed to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Guo, F., Duanmu, F. et al. Enhanced sensing performance toward alcohols using copper oxide based on exposed crystal facet driven catalytic oxidation. J Mater Sci: Mater Electron 32, 26676–26687 (2021). https://doi.org/10.1007/s10854-021-07045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07045-4

Navigation