Skip to main content
Log in

Investigation on the effect of process parameter on physical properties of RF-sputtered Mo–Ni thin films as a back contact thin-film solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the influence of RF power and deposition time on the structural, chemical, morphological, optical, and electrical properties of sputtered Mo–Ni thin films grown on soda–lime glass by an RF magnetron sputtering system have been investigated. The XRD measurements revealed that the films’ crystallites preferred orientation were mostly in the (110) direction. The FESEM images showed that the resistivity of the Molybdenum thin films decreased as the substrate RF power increased, which was accompanied by an increment in grain size. At 200 W, the optimized molybdenum bilayer represented a resistivity of 12.2 Ω m and the reflectivity of 30%. Moreover, comparison finds the effect of deposition time on structural and electrical properties on Mo–Ni thin films. On the increment of deposition time, structural crystallinity and the resistivity of films improved significantly as a result of the introduction of the small amount of Ni atoms. Thus, Mo–Ni bilayer film, which has improved crystallinity, reflectance, and with reduced resistivity, can be used as a good back contact material of thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Jubault et al., Optimization of molybdenum thin films for electrodeposited CIGS solar cells. Sol. Energy Mater. Sol. Cells 95, S26–S31 (2011)

    Article  CAS  Google Scholar 

  2. H.-M. Wu et al., Structure and electrical properties of Mo back contact for Cu (In, Ga) Se2 solar cells. Vacuum 86(12), 1916–1919 (2012)

    Article  CAS  Google Scholar 

  3. D. Zhou et al., Sputtered molybdenum thin films and the application in CIGS solar cells. Appl. Surf. Sci. 362, 202–209 (2016)

    Article  CAS  Google Scholar 

  4. J. Li et al., Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater. Today Energy 16, 100390 (2020)

    Article  Google Scholar 

  5. G. Gordillo, M. Grizález, L. Hernandez, Structural and electrical properties of DC sputtered molybdenum films. Solar Energy Mater. Solar Cells 51(3–4), 327–337 (1998)

    Article  CAS  Google Scholar 

  6. X. Dai et al., Molybdenum thin films with low resistivity and superior adhesion deposited by radio-frequency magnetron sputtering at elevated temperature. Thin Solid Films 567, 64–71 (2014)

    Article  CAS  Google Scholar 

  7. J.-H. Yoon et al., Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga) Se2 solar cells and its effects on Mo film properties and Na diffusivity. Solar Energy Mater. Solar Cells 95(11), 2959–2964 (2011)

  8. A. Peng et al., MoC/MnO composite materials as high efficient and stable counter electrode catalysts for dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 31(3), 1976–1985 (2020)

    CAS  Google Scholar 

  9. R. Ge et al., Surface and interface engineering: molybdenum carbide-based nanomaterials for electrochemical energy conversion. Small 17(9), 1903380 (2021)

    Article  CAS  Google Scholar 

  10. M.E. Ziebel, J.C. Ondry, J.R. Long, Two-dimensional, conductive niobium and molybdenum metal–organic frameworks. Chem. Sci. 11(26), 6690–6700 (2020)

    Article  CAS  Google Scholar 

  11. Q. Cui et al., Effect of molybdenum particles on thermal and mechanical properties of graphite flake/copper composites. Carbon 161, 169–180 (2020)

    Article  CAS  Google Scholar 

  12. E. Takahashi, S.A. Pethe, N.G. Dhere, Correlation between preparation parameters and properties of molybdenum back contact layer for CIGS thin film solar cell. In: 2010 35th IEEE Photovoltaic Specialists Conference. IEEE (2010)

  13. S.A. Pethe et al., Effect of sputtering process parameters on film properties of molybdenum back contact. Solar Energy Mater. Solar Cells 100, 1–5 (2012)

    Article  CAS  Google Scholar 

  14. A. Bollero et al., Morphological, electrical and optical properties of sputtered Mo thin films on flexible substrates. Phys. Status Solidi (a) 206(3), 540–546 (2009)

    Article  CAS  Google Scholar 

  15. G. Gordillo, F. Mesa, C. Calderón, Electrical and morphological properties of low resistivity Mo thin films prepared by magnetron sputtering. Braz. J. Phys. 36(3B), 982–985 (2006)

    Article  CAS  Google Scholar 

  16. Z.-H. Li, E.-S. Cho, S.J. Kwon, Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells. Appl. Surf. Sci. 257(22), 9682–9688 (2011)

  17. Y.-C. Lin, W. Yen, L. Wang, Effect of substrate temperature on the characterization of molybdenum contacts deposited by DC magnetron sputtering. Chin. J. Phys. 50, 82–88 (2012)

    CAS  Google Scholar 

  18. J.H. Scofield et al., Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films 260(1), 26–31 (1995)

    Article  CAS  Google Scholar 

  19. A.A. Barzinjy et al., Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J. Mater. Sci.: Mater. Electron. 31, 11303–11316 (2020)

    CAS  Google Scholar 

  20. A.M. Białostocka, U. Klekotka, B. Kalska-Szostko, The effect of a substrate material on composition gradients of Fe-Ni films obtained by electrodeposition. Sci. Rep. 10(1), 1–8 (2020)

    Article  Google Scholar 

  21. A.P. Murthy et al., Single-step electrodeposited molybdenum incorporated nickel sulfide thin films from low-cost precursors as highly efficient hydrogen evolution electrocatalysts in acid medium. J. Phys. Chem. C 121(21), 11108–11116 (2017)

    Article  CAS  Google Scholar 

  22. F. Yang et al., Hydrogen evolution reaction property of molybdenum disulfide/nickel phosphide hybrids in alkaline solution. Metals 8(5), 359 (2018)

    Article  Google Scholar 

  23. H. Wei et al., Tungsten trioxide/zinc tungstate bilayers: electrochromic behaviors, energy storage and electron transfer. Electrochim. Acta 132, 58–66 (2014)

    Article  CAS  Google Scholar 

  24. H. Wei et al., Electrochemical properties and electrochromic behaviors of the sol–gel derived tungsten trioxide thin films. Energy Environ. Focus 2(2), 112–120 (2013)

    Article  Google Scholar 

  25. M. Khan et al., Residual strain and electrical resistivity dependence of molybdenum films on DC plasma magnetron sputtering conditions. Mater. Sci. Semiconduct. Process. 27, 343–351 (2014)

    Article  CAS  Google Scholar 

  26. H. Khatri, S. Marsillac, The effect of deposition parameters on radiofrequency sputtered molybdenum thin films. J. Phys.: Condens. Matter. 20(5), 055206 (2008)

    Google Scholar 

  27. C.-H. Huang et al., Investigation of sputtered Mo layers on soda-lime glass substrates for CIGS solar cells. Semicond. Sci. Technol. 27(11), 115020 (2012)

    Article  Google Scholar 

  28. S. Tripathi, B. Kumar, D. Dwivedi, Study on formation and characterization of kesterite CZTSSe thin films deposited by thermal evaporation technique for solar cell applications. J. Mater. Sci.: Mater. Electron. 31(11), 8308–8315 (2020)

    CAS  Google Scholar 

  29. G. Marzun et al., Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis. J. Colloid Interface Sci. 489, 57–67 (2017)

    Article  CAS  Google Scholar 

  30. S. Fatemi, S.R. Panahi et al., Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously. J. Mater. Sci.: Mater. Electron. 31, 11527–11537 (2020)

    Google Scholar 

  31. M. Schalenbach et al., Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: activity and stability revised. Electrochim. Acta 259, 1154–1161 (2018)

    Article  CAS  Google Scholar 

  32. J.-H. Cha et al., Effect of thermal annealing on the structure, morphology, and electrical properties of Mo bottom electrodes for solar cell applications. J. Korean Phys. Soc. 59 (2011)

  33. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)

    Article  CAS  Google Scholar 

  34. N.K. Samani et al., Annealing effect on structural and optical constants of SnS thin films for solar cells application. Optik 131, 231–241 (2017)

    Article  Google Scholar 

  35. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Reading, 1956)

    Google Scholar 

  36. K. Leitner et al., On grain boundary segregation in molybdenum materials. Mater. Des. 135, 204–212 (2017)

    Article  CAS  Google Scholar 

  37. A.K. Gain, L. Zhang, Effect of isothermal aging on microstructure, electrical resistivity and damping properties of Sn–Ag–Cu solder. J. Mater. Sci.: Mater. Electron. 28(13), 9363–9370 (2017)

    CAS  Google Scholar 

  38. G. Tranchida, F. Di Franco, M. Santamaria, Role of molybdenum on the electronic properties of passive films on stainless steels. J. Electrochem. Soc. 167(6), 061506 (2020)

    Article  CAS  Google Scholar 

  39. A. Hassan et al., Improved optical and electrochemical performance of MoS2-incorporated TiO2-PbS nanocomposite for solar paint application. J. Mater. Sci.: Mater. Electron. 31(3), 2625–2633 (2020)

    CAS  Google Scholar 

  40. K. Leitner et al., Grain boundary segregation engineering in as-sintered molybdenum for improved ductility. Scripta Mater. 156, 60–63 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like thank the Department of Science and Technology (SERB), India for the financial support of this study through SB/S2/RJN-140/2014 (Ramanujan Fellowship Award) and CRG/2019/000903 (Core Research Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avanish Singh Parmar.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, H., Ghorannevis, Z. & Parmar, A.S. Investigation on the effect of process parameter on physical properties of RF-sputtered Mo–Ni thin films as a back contact thin-film solar cell. J Mater Sci: Mater Electron 32, 26631–26640 (2021). https://doi.org/10.1007/s10854-021-07040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07040-9

Navigation