Skip to main content
Log in

Using RSM optimization to fabricate Ni–Fe–P ternary alloy electroless coating and explore its corrosion properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the Ni–Fe–P ternary alloy coating was fabricated by electroless deposition and the process parameters of coating preparation were investigated in detail via response surface methodology. The optimal bath temperature and pH for Ni–Fe–P ternary alloy coatings were determined by the central composite design with two center points and the statistical model was established to identify the optimal process conditions for Ni–Fe–P ternary alloy coating. The micro-structure of Ni–Fe–P coatings was investigated by scanning electron microscope. The dispersive spectroscopy and X-ray diffraction were used to study the chemical composition of the coatings. The electrochemical impedance spectroscopy and the potential polarization techniques were used to research its corrosion resistance in 3.5 wt.% NaCl solution. The results show that the coating has the optimal corrosion resistance while the bath temperature was 85 °C and bath pH was 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Attarzadeh, M. Molaei, K. Babaei, A. Fattah-alhosseini, New promising ceramic coatings for corrosion and wear protection of steels: a review. Surf. Interfaces (2021). https://doi.org/10.1016/j.surfin.2021.100997

    Article  Google Scholar 

  2. M.F. Montemor, Functional and smart coatings for corrosion protection: a review of recent advances. Surf. Coat. Technol. (2014). https://doi.org/10.1016/j.surfcoat.2014.06.031

    Article  Google Scholar 

  3. D. Wang, G.R. Bierwagen, Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. (2009). https://doi.org/10.1016/j.porgcoat.2008.08.010

    Article  Google Scholar 

  4. R. Rajkumar, C. Vedhi, A study of corrosion protection efficiency of silica nanoparticles acrylic coated on mild steel electrode. Vacuum (2019). https://doi.org/10.1016/j.vacuum.2018.12.005

    Article  Google Scholar 

  5. B. Liu, S. Yan, Y. He, H. Li, Y. Fan, T. He, Y. Xiang, Preparation of Ni-W-eGO composite coatings and investigation of its mechanical properties and corrosion resistance. Colloids. Surf. A Physicochem. Eng. Asp. (2021). https://doi.org/10.1016/j.colsurfa.2021.127385

    Article  Google Scholar 

  6. Y.C. Lin, S. Liu, Robust ZnO nanowire photoanodes with oxygen vacancies for efficient photoelectrochemical cathodic protection. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.150694

    Article  Google Scholar 

  7. F. Pessu, R. Barker, F. Chang, T. Chen, A. Neville, Iron sulphide formation and interaction with corrosion inhibitor in H2S-containing environments. J. Pet. Sci. Eng. (2021). https://doi.org/10.1016/j.petrol.2021.109152

    Article  Google Scholar 

  8. H.J. Li, Y. He, P.Y. Luo, Y. Fan, T. He, Y.H. Zhang, Y.X. Xiang, Y.H. He, R.X. Song, Fabrication of the ZrC reinforced Ni-W composite coating and exploration of its mechanical properties and corrosion resistance. Surf. Coat. Technol. (2020). https://doi.org/10.1016/j.surfcoat.2021.127413

    Article  Google Scholar 

  9. B. Li, T. Mei, S. Du, W. Zhang, Synthesis of Ni–Fe and Ni–Fe/ZrO2 composite coating and evaluation of its structural and corrosion resistance. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122595

    Article  Google Scholar 

  10. R.X. Song, S.H. Zhang, Y. He, H. Li, Y. Fan, T. He, Y.H. Zhang, Y.X. Xiang, H. Zhang, Effect of H-MWCNTs addition on anti-corrosion performance and mechanical character of Ni-Cu/H-MWCNTs composite coatings prepared by pulse electrodeposition technique. Colloids. Surf. A: Physicochem. Eng. Asp. (2021). https://doi.org/10.1016/j.colsurfa.2021.127519

    Article  Google Scholar 

  11. Y.H. Zhang, S.H. Zhang, Y. He, H.J. Li, T. He, Y. Fan, H.L. Zhang, Mechanical properties and corrosion resistance of pulse electrodeposited Ni-B/B4C composite coatings. Surf. Coat. Technol. (2021). https://doi.org/10.1016/j.surfcoat.2021.127458

    Article  Google Scholar 

  12. W.J. Cheong, B.L. Luan, D.W. Shoesmith, The effects of stabilizers on the bath stability of electroless Ni deposition and the deposit. Appl. Surf. Sci. (2004). https://doi.org/10.1016/j.apsusc.2004.02.003

    Article  Google Scholar 

  13. H. Daneshmand, A. Sazgar, M. Araghchi, Fabrication of robust and versatile superhydrophobic coating by two-step spray method: An experimental and molecular dynamics simulation study. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.150825

    Article  Google Scholar 

  14. O. Kilanko, O.S.I. Fayomi, A.A. Sode, Anticorrosion effect of silicon nitride and zirconium diboride composite on Ni–P–Zn electroless deposition on mild steel. J. Bio- and Tribo-Corrosion (2020). https://doi.org/10.1007/s40735-020-00392-5

    Article  Google Scholar 

  15. S. Sadreddini, A. Afshar, M.A. Jazani, Tribological properties of Ni–P–SiO2 nanocomposite coating on aluminum. Colloid J. (2015). https://doi.org/10.1134/s1061933x15050166

    Article  Google Scholar 

  16. D. Dong, X.H. Chen, W.T. Xiao, G.B. Yang, P.Y. Zhang, Preparation and properties of electroless Ni–P–SiO2 composite coatings. Appl. Surf. Sci. (2009). https://doi.org/10.1016/j.apsusc.2009.03.039

    Article  Google Scholar 

  17. C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa, A. Ahmed, Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites. Mater. Sci. Eng. A-Struct. (2009). https://doi.org/10.1016/j.msea.2008.10.012

    Article  Google Scholar 

  18. F.J. He, Y.Z. Fang, S.J. Jin, The study of corrosion-wear mechanism of Ni-W-P alloy. Wear (2014). https://doi.org/10.1016/j.wear.2013.12.024

    Article  Google Scholar 

  19. B.K. Kim, S.K. Kim, S.K. Cho, J.J. Kim, Enhanced catalytic activity of electrodeposited Ni-Cu-P toward oxygen evolution reaction. Appl. Catal. B. (2018). https://doi.org/10.1016/j.apcatb.2018.05.082

    Article  Google Scholar 

  20. Z.G. An, J.J. Zhang, Sl. Pan, Fabrication of glass/Ni–Fe–P ternary alloy core/shell composite hollow microspheres through a modified electroless plating process. Appl. Surf. Sci. (2008). https://doi.org/10.1016/j.apsusc.2008.07.067

    Article  Google Scholar 

  21. A.E. Fetohi, R.M.A. Hameed, K.M. El-Khatib, E.R. Souaya, Ni-P and Ni-Co-P coated aluminum alloy 5251 substrates as metallic bipolar plates for PEM fuel cell applications. Int. J. Hydrog. Energy. (2012). https://doi.org/10.1016/j.ijhydene.2012.01.145

    Article  Google Scholar 

  22. C. Shi, L. Wang, L. Wang, Preparation of corrosion-resistant, EMI shielding and magnetic veneer-based composite via Ni–Fe–P alloy deposition. J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3331-6

    Article  Google Scholar 

  23. X. Yan, J. Sun, Y. Wang, J. Yang, A Fe-promoted Ni–P amorphous alloy catalyst (Ni–Fe–P) for liquid phase hydrogenation of m- and p-chloronitrobenzene. J. Mol. Catal. A: Chem. (2006). https://doi.org/10.1016/j.molcata.2006.01.060

    Article  Google Scholar 

  24. Q. Zhang, L. Ning, C. Wang, M. Wang, Y. Shen, Y. Yan, Fabrication and characterization of bio-based shielding material with dissimilar surface resistivity prepared by electroless Ni–Fe–P alloy plating on bamboo (N. affinis). J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02476-6

    Article  Google Scholar 

  25. H.J.M. Soares, O.S. Campos, D.F. Dias, P.N.S. Casciano, P. de Lima-Neto, A.N. Correia, Chemical, morphological and corrosion characterisations of electrodeposited Ni-Fe-P coatings. Electrochim. Acta. (2018). https://doi.org/10.1016/j.electacta.2018.07.151

    Article  Google Scholar 

  26. L.L. Wang, L.H. Zhao, G. Huang, Composition, structure and corrosion characteristics of Ni-Fe-P and Ni-Fe-P-B alloy deposits prepared by electroless plating. Surf. Coat. Technol. (2000). https://doi.org/10.1016/S0257-8972(00)00545-4

    Article  Google Scholar 

  27. F.L.G. Silva, J.R. Garcia, V.G.M. Cruz, A.S. Luna, D.C.B. Lago, L.F. Senna, Response surface analysis to evaluate the influence of deposition parameters on the electrodeposition of Cu-Co alloys in citrate medium. J. Appl. Electrochem. (2008). https://doi.org/10.1007/s10800-008-9630-3

    Article  Google Scholar 

  28. J. Mangas-Murillo, E.M. Cuerda-Correa, J.R. Dominguez, A. Macias-Garcia, E. Bernalte, Electrical resistivity of YSZ-coated stainless steel electrodes. A study by response surface methodology. J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2013.05.086

    Article  Google Scholar 

  29. E. Yucel, N. Guler, Y. Yucel, Optimization of deposition conditions of CdS thin films using response surface methodology. J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2013.11.067

    Article  Google Scholar 

  30. H. Farnoush, D.H. Fatmehsari, J.A. Mohandesi, H. Abdoli, Evaluation of strengthening behavior of Al-AlN nanostructured composite by the use of modified Heckel model and response surface methodology. J. Alloys Compd. (2012). https://doi.org/10.1016/j.jallcom.2011.11.138

    Article  Google Scholar 

  31. G. Chen, J. Chen, C. Srinivasakannan, J.H. Peng, Application of response surface methodology for optimization of the synthesis of synthetic rutile from titania slag. Appl. Surf. Sci. (2012). https://doi.org/10.1016/j.apsusc.2011.11.039

    Article  Google Scholar 

  32. H.T. Bai, Y.Q. Wang, Y. Ma, Q.B. Zhang, N.S. Zhang, Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture. Materials (2018). https://doi.org/10.3390/ma11091765

    Article  Google Scholar 

  33. L. Liu, H. Zhang, H. Zheng, J. Peng, P. Gong, X. Wang, Z. Chen, X. Cao, Influence of crystalline structure on diffusion barrier property of electroless Ni–Fe–P coatings in Zn–Al solder interconnects. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.06.384

    Article  Google Scholar 

  34. L.M. Abrantes, J.P. Correia, On the mechanism of electroless Ni-P plating. J. Electrochem. Soc. (1994). https://doi.org/10.1149/1.2055125

    Article  Google Scholar 

  35. M.E. Touhami, E. Chassaing, M. Cherkaoui, Kinetics of the autocatalytic deposition of Ni-P alloys in ammoniacal solutions. Electrochim. Acta. (1998). https://doi.org/10.1016/S0013-4686(97)00322-8

    Article  Google Scholar 

  36. A.L.M. Oliveira, J.D. Costa, M.B. de Sousa, J.J.N. Alves, A.R.N. Campos, R.A.C. Santana, S. Prasad, Studies on electrodeposition and characterization of the Ni–W–Fe alloys coatings. J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2014.09.087

    Article  Google Scholar 

  37. S.A. Ataie, A. Zakeri, RSM optimization of pulse electrodeposition of Zn-Ni-Al2O3 nanocomposites under ultrasound irradiation. Surf. Coat. Technol (2019). https://doi.org/10.1016/j.surfcoat.2018.12.063

    Article  Google Scholar 

  38. J.X. Kang, W.Z. Zhao, G.F. Zhang, Influence of electrodeposition parameters on the deposition rate and microhardness of nanocrystalline Ni coatings. Surf. Coat. Technol (2009). https://doi.org/10.1016/j.surfcoat.2009.01.003

    Article  Google Scholar 

  39. I.V. Petukhov, M.G. Shcherban, N.E. Skryabina, N.E. Skryabina, Corrosion and electrochemical behavior of Ni–P coatings in 0.5 M H2SO4. Prot. Met. (2002). https://doi.org/10.1023/A:1019669503487

    Article  Google Scholar 

  40. B. Akteke-Öztürk, G.-W. Weber, G. Köksal, Generalized desirability functions: a structural and topological analysis of desirability functions. Optimization (2019). https://doi.org/10.1080/02331934.2019.1570192

    Article  Google Scholar 

Download references

Acknowledgements

Open Fund (PLN161, PLN201806) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) and the National Natural Science Foundation of China (51774245) financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Bai or Yi He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Bai, Y., He, Y. et al. Using RSM optimization to fabricate Ni–Fe–P ternary alloy electroless coating and explore its corrosion properties. J Mater Sci: Mater Electron 32, 26412–26424 (2021). https://doi.org/10.1007/s10854-021-07020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07020-z

Navigation