Skip to main content
Log in

Two photon absorption induced optical limiting action of oxalate salt of pyridine for laser-assisted optoelectronic techniques

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A promising organic nonlinear optical single crystals of pyridinium oxalate (1-) oxalic acid dihydrate (POOAD) was successfully synthesized to analyse its physiochemical properties. The grown crystal belongs to triclinic crystal system with space group \(\overline{{P }_{1}}\) and unit cell dimensions were found to be a = 7.17 Å, b = 9.79 Å, c = 10.26 Å. All interactions present in the crystal lattice were analysed by Hirshfeld surface analysis. Combined FTIR and Raman spectra of POOAD single crystal clearly suggested the active sites and authenticates the incorporation of oxalate part in the crystal lattice. NBO analysis elucidates that the structure was mainly stabilized by intermolecular hydrogen bond interaction. The nature of charges present in the material is theoretically investigated by Natural Population analysis. Absorbance maxima, optical window, optical bandgap, Urbatch energy, linear refractive index of POOAD crystal was estimated with the help of UV visible spectroscopy. Fluorescence studies shows POOAD exhibit green emission and its suitability for green light-emitting NLO devices. Global reactivity descriptors were calculated using HOMO- LUMO energy gap. MESP analysis visualize the effective inter molecular charge transfer interactions between the electrophilic and nucleophilic part which enhances the optical nonlinearity. The mechanical parameters such as yield strength, elastic stiffness, fracture toughness and brittle Index of the grown crystals is analyzed using Vicker’s microhardness test. Laser damage threshold of POOAD crystal is calculated as 2.15 GW/cm2 and is higher than the reference material. Z-scan experiment with nanopulsed Nd:YAG laser shows POOAD exhibit two-photon absorption induced optical limiting action. Thus POOAD crystal with high thermal and mechanical stability can be utilized as laser safety devices against most sensitive green nanopulsed lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecule and Crystals (Academic, NewYork, 1987)

    Google Scholar 

  2. S.B. Monacco, L.E. Davis, S.P. Velsko, D. Eimmer, J. Cryst, Growth 85, 252 (1987)

    Google Scholar 

  3. P.N. Prasad, D.J. Williams, Introduction to nonlinear optical effects in molecules and polymers. (John Wiley & sons, NewYork, 1991)

  4. P. Gunter, C.H. Bosword, K. Sutter, H. Airend, G. Chapuis, R.J. Tweig, D. Dohrouslski, Appl. Phys. Lett. 50, 486 (1997)

    Google Scholar 

  5. V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, H.K.V. Lotsch, Handbook of Nonlinear Optical Crystals (Springer, Berlin Heidelberg, Berlin, Heidelberg, 1999)

    Google Scholar 

  6. M.S. Wong, C. Bosshard, F. Pan, P. Günter, Non-classical donor-acceptor chromophores for second order nonlinear optics. Adv. Mater. 8, 677–680 (1996)

    CAS  Google Scholar 

  7. S.M. Soliman, DFT study on the reactivity of mono-substituted pyridine ligands. Comput. Theor. Chem. 994, 105–111 (2012)

    CAS  Google Scholar 

  8. D.S. Marlin, M.M. Olmstead, P.K. Mascharak, Structure-spectroscopy correlation in distorted five-coordinate Cu(II) complexes: a case study with a set of closely related copper complexes of pyridine-2,6-dicarboxamide ligands. Inorg. Chem. 40, 7003e7008 (2001)

    Google Scholar 

  9. H.Z. Kou, Z.H. Ni, B.C. Zhou, R.J. Wang, Synthesis, structure and spectral properties of a novel molybdoantimonate NaSbMoO5. Inorg. Chem. Commun. 7, 1150 (2004)

    CAS  Google Scholar 

  10. A. Mishra, N.K. Kaushik, A.K. Verma, Rajeev Gupta, Synthesis, characterization and antibacterial activity of cobalt(III)complexes with pyridineeamide ligands. Eur. J. Inorg. Chem. 43, 2189e2196 (2008)

    Google Scholar 

  11. M.R. Bermejo, A.M. Gonzalez-Noya, V. Abad, et al., Formation of novel 1-D chains by m-amido bridging of dinuclear manganese(III)-Schiff base complexes. Eur. J. Inorg. Chem. 3696e3705 (2004)

  12. A. Mansour, M. Zaied, I. Ali, S. Soliman, M. Othmani, Synthesis, molecular structure, spectroscopic characterization and antibacterial activity of the Co(III) (chlorido)(pyridine) and (chlorido) (4,40-bipyridine) ‘‘picket fence” porphyrin complexes. Polyhedron 127, 496504 (2017)

    Google Scholar 

  13. N. Raman, Y.P. Raja, A. Kulandaismy, Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) Schiff base complexes derived from o-phenylenediamine and acetoacetanilide. Chem. Sci. 113, 183e189 (2001). https://doi.org/10.1007/BF02704068

    Article  Google Scholar 

  14. X.M. Ouyang, B.L. Fei, T.A. Okamuro, W.Y. Sun, W.X. Tang, N. Ueyama, Synthesis, crystal structure and superoxide dismutase (SOD) activity of novel seven-coordinated manganese(II) complex with multidentate di-schiff base ligands. Chem. Lett. 362, 362e363 (2002)

    Google Scholar 

  15. H. Sharghi, M.A. Nasseri, Schiff base metal(II) complexes as new catalysts in the efficient, mild and regioselective conversion of 1,2-epoxyethans to 2- hydroxy-ethyl thiocyanates with ammonium thiocyanate. Bull. Chem. Soc. 76, 137e142 (2003)

    Google Scholar 

  16. G.G. Mohamed, Synthesis, characterization and biological activity of bis(phenylimine) Schiff base ligands and their metal complexes. Spectrochim. Acta A 64, 188e195 (2006)

    Google Scholar 

  17. S. Hilton, S. Naud, J.J. Caldwell, K. Boxall, S. Burns, V.E. Anderson, L. Antoni, C.E. Allen, L.H. Pearl, A.W. Oliver, A.G. Wynne, M.D. Garrett, I. Collins, Identification and characterisation of 2-aminopyridine inhibitors of checkpoint kinase 2. Bioorg. Med. Chem. 18, 707e718 (2010). https://doi.org/10.1016/j.bmc.2009.11.058

    Article  CAS  Google Scholar 

  18. D.S. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals, quantum electronics. Principles and applications, vol. 1(a), (Academic Press. Inc, 1987). pp. 23–191

  19. J.F. Nicoud, R.J. Twieg, Nonlinear optical properties of organic molecules and crystals, quantum electronics. Principles and applications, Vol. 1(b), (Academic Press. Inc, 1987), pp 227–296

  20. M. Barzoukas, M. Blanchard-Desce, D. Josse, J.M. Lehn, J. Zyss, Very large quadratic nonlinearities in solution of two push-pull polyene series: effect of the conjugation length and of the end groups. Chem. Phys. 133, 323–329 (1989)

    CAS  Google Scholar 

  21. S. Shinkichi, W. Nanao, K. Toshiaki, S. Takayuki, A. Nobuyuki, M. Sinji, I. Hisao (2007) Pyridine and pyridine derivatives. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH

  22. K. Rajagopal, V. Tamilselvi, R.V. Krishnakumar, S. Natarajan, Pyridinium oxalate(1–) oxalic acid dihydrate. Acta Crystallogr. Sect. E: Struct. Rep. Online 59(6), 0742–0744 (2003)

    Google Scholar 

  23. M.J. Frisch et al., Gaussian 09W Program (Gaussian Inc., Wallingford, CT, 2009)

    Google Scholar 

  24. M. J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, M.A. Spackman (2017) CrystalExplorer 17.5. The University of Western Australia

  25. T. David Willington, S.E. Joema, S. Sindhusha, V.K. Suma, Investigation on structural, optical, mechanical, thermal and nonlinear optical activity of 2-methylazinium (2,4,6)-trinitrophenolate – experimental and DFT approach. J. Mol. Str. 1230, 129644 (2021)

    Google Scholar 

  26. S. Sindhusha, C.M. Padma, B. Gunasekaran, H. Marshan Robert, Structural, optical and thermal analysis of creatininium borate – A new semiorganicnlo single crystal. J. Mol. Str. 1209, 127981 (2020)

    CAS  Google Scholar 

  27. G. Socrates, Infrared and raman characteristic group frequencies: tables and charts, 3rd edition (Wiley, Chichester, 2004) ISBN: 978-0-470-09307-8

  28. S. Madhankumar, P. Muthuraja, M. Dhandapani, Molecular properties, crystal structure, Hirshfeld surface analysis and computational calculations of a new third order NLO organic crystal, 2-aminopyridinium benzilate. J. Mol. Str. (2019).

  29. R. Thirumurugan, B. Babu, K. Anitha, J. Chandrasekaran, Experimental and density functional theory (DFT): a dual approach to probe the key properties of creatininium l-tartrate monohydrate single crystal for nonlinear optical applications. J. Mol. Struct. 1149, 48–57 (2017)

    CAS  Google Scholar 

  30. S. Sindhusha, C.M. Padma, B. Gunasekaran, Crystal structure, spectroscopic characterization, mechanical, thermal and theoretical investigations on creatininium benzenesulfonate - A new organic NLO single crystal. J. Mol. Str. 1221, 128863 (2020)

    CAS  Google Scholar 

  31. J. Jagger, Conduct of experiments. In: Introduction to research in ultraviolet photobiology, (Printice Hall, Inc. Englewood. Cliffs, N. J., 1967), pp. 50–67

  32. P. Sangeetha, P. Jayaprakash, M. Nageshwari, C.S.R.T.K. Sutha, M. Prakash, G. Vinitha, M. Lydia Caroline, Growth and characterization of an efficient new NLO single crystal L-phenylalanine D-methionine for frequency conversion and optoelectronic applications. J. Phys. B 525, 164–174 (2017)

    CAS  Google Scholar 

  33. D. Abila Darling, S.E. Joema, Antibacterial activity, optical, mechanical, thermal, and dielectric properties of L-phenylalanine fumaric acid single crystals for biomedical, optoelectronic, and photonic applications. J. Mater. Sci. Mater. Electron. 31, 22427–22441 (2020)

    Google Scholar 

  34. G. Shanmugam, S. Brahadeeswaran, Spectroscopic, thermal and mechanical studies on 4-methylanilinium p-toluenesulfonate-a new organic NLO single crystal. Spectrochim. Acta 95, 177–183 (2012)

    CAS  Google Scholar 

  35. F. Urbach, Phys. Rev. 92, 1324 (1953)

    CAS  Google Scholar 

  36. M. Karimi, M. Rabiee, F. Moztarzadeh, M. Tahriri, M. Bodaghi, Curr. Appl. Phys. 9, 1263–1268 (2009)

    Google Scholar 

  37. P. Karuppasamya, M.S. Pandian, P. Ramasamy, S. Verma, Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications. Opti. Mater. 72, 152–171 (2018)

    Google Scholar 

  38. J. Reichman, Handbook of optical filters for fluorescence Microscopy, (Brattleboro VT: Chroma technology corp, 1998)

  39. S. Sindhusha, C.M. Padma, V. Thayanithi, Experimental and theoretical investigations of organic creatininium 2-chloroacetate nonlinear optical single crystal. J. Mater. Sci. Mater. Electron. 32, 6498–6510 (2021)

    CAS  Google Scholar 

  40. M. Nageshwari, C.R.T. Kumari, G. Vinitha, S. Muthu, M.L. Caroline, Growth andcharacterization of l-Serine: a promising acentric organic crystal. Phys. B 54, 32–42 (2018)

    Google Scholar 

  41. J.P. Cahoon, W.H. Broughton, A.R. Katzuk, The determination of yield strength from hardness measurements. Metall. Trans. 2, 1979–1983 (1971)

    CAS  Google Scholar 

  42. K. Susmita, S.P. Sen Gupta, Vickers microhardness studies on solution-grown single crystals of magnesium sulphatehepta-hydrate. Mater. Sci. Eng. 398, 198–203 (2005)

    Google Scholar 

  43. R. Surekha, R. Gunaseelan, P. Sagayaraj, K. Ambujam, L-Phenylalanine L-Phenylalaninium bromide a new non linear optical materials RSC. Cryst. Engg. Comm. 16, 7979 (2014)

    CAS  Google Scholar 

  44. K.K. Bamzai, P.N. Kotru, B.M. Wankyln, Fracture mechanics, crack propagation and microhardness studies on flux growth Er Alo3 single crystals. J. Matter. Sci. Technol. 16, 405–410 (2000)

    CAS  Google Scholar 

  45. W.C. Unwin, Proceedings of the institution of mechanical engineers. Part H. J. Eng. Med. 95, 405 (1918)

    Google Scholar 

  46. T. Dhanabal, M. Sethuram, G. Amirthaganesan, S.K. Das, J. Mogtyl. Struct. 1045, 112–123 (2013)

    CAS  Google Scholar 

  47. R. Thirumurugan, K. Anitha, Growth, structural, physical and computational perspectives of trans-4-hydroxy-l-proline: a promising organic nonlinear optical material with large laser-induced damage threshold. Mater. Res. Express 4, 056202 (2017). https://doi.org/10.1088/2053-1591/aa6072

    Article  CAS  Google Scholar 

  48. V.K. Suma, D. Aruldhas, I. Hubert Joe, N.L. John, Structural analysis, NLO activity and Hirshfeld surfaces of DL-cysteinium semi oxalate crystal. J. Mol. Str. 1216, 128278 (2020)

    CAS  Google Scholar 

  49. A.H. Reshak, D. Stys, S. Auluck, I.V. Kityk, Linear and nonlinear optical susceptibilities of 3-Phenylamino-4-phenyl-1,2,4-triazole-5-thione. J. Phys. Chem. B 114, 1815–1821 (2010)

    CAS  Google Scholar 

  50. Y. Dwivedi, G. Tamashiro, L.D. Boni, S.C. Zilio, Nonlinear opticalcharacterizations of dibenzoylmethane in solution. Opt. Commun. 293, 119–124 (2013)

    CAS  Google Scholar 

  51. G. Maroulis, C. Pouchan, Size and electric dipole (hyper) polarizability in smallcadmium sulfide clusters: an ab initio study on (CdS)n, n= 1, 2, and 4. J. Phys. Chem. B 107, 10683–10686 (2003)

    CAS  Google Scholar 

  52. M. Saravanan, T.C. Sabari Girisun, Nonlinear optical absorption and optical limiting properties of cadmium ferrite. Mater. Chem. Phys. 160, 413–419 (2015)

    CAS  Google Scholar 

  53. R. Philip, P. Chantharasupawong, H. Qian, R. Jin, J. Thomas, Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett. 12(9), 4661–4667 (2012)

    CAS  Google Scholar 

  54. P. Thomas, P. Sreekanth, R. Philip, K.E. Abraham, Morphology dependent nanosecond and ultrafast optical power limiting of CdO nanomorphotypes. RSC Adv. 5(44), 35017–35025 (2015)

    CAS  Google Scholar 

  55. M. Abd-Lefdil, A. Belayachi, S. Pramodini, P. Poornesh, A. Wojciechowski, A.O. Fedorchuk, Structural, photoinduced optical effects and third-order nonlinear optical studies on Mn doped and Mn–Al codoped ZnO thin films under continuous wave laser irradiation. Laser Phys. 24(3), 035404 (2014)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Joema.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willington, T.D., Joema, S.E., Sindhusha, S. et al. Two photon absorption induced optical limiting action of oxalate salt of pyridine for laser-assisted optoelectronic techniques. J Mater Sci: Mater Electron 32, 25444–25461 (2021). https://doi.org/10.1007/s10854-021-07004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07004-z

Navigation