Skip to main content

Advertisement

Log in

Boron-doped helical carbon nanotubes as active supercapacitor cathode materials: preparation and electrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Boron-doped helical carbon nanotubes (B-HCNTs) were synthesized by annealing HCNTs under the boric acid presence. Successful B incorporation into the HCNT matrix was confirmed by the extensive characterization performed by field emission scanning, transmission electron microscopies, X-ray diffraction, Raman spectroscopy, as well as X-ray photoelectron spectroscopy. B doping did not damage the HCNT structures. However, B presence and content affected B-HCNT electrochemical performance, which was tested by cyclic voltammetry, galvanostatically, and by electrochemical impedance spectroscopy. The B-HCNTs demonstrated excellent energy storage performance, cycling stability, and specific capacitance equal to 212.6 F g−1 at 1 A g−1. Thus, HCTN capacity was increased significantly after B doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Tian, Q. Wang, X.N. Chen, W.Q. Yang, Z.Q. Wu, X.L. Xu, M. Jiang, Z.W. Zhou, Enhanced performance of core-shell structured polyaniline at helical carbon nanotube hybrids for ammonia gas sensor. Appl. Phys. Lett. 105, 203109 (2014)

    Article  Google Scholar 

  2. S. Giri, D. Ghosh, C.K. Das, Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Adv. Funct. Mater. 24, 1312–1324 (2014)

    Article  CAS  Google Scholar 

  3. Z.Y. Yu, L.F. Chen, L.T. Song, Y.W. Zhu, H.X. Ji, S.H. Yu, Free-standing boron and oxygen Co-doped carbon nanofiber films for large volumetric capacitance and high rate capability supercapacitors. Nano Energy 15, 235–243 (2015)

    Article  CAS  Google Scholar 

  4. S. Ghosh, S. Barg, S.M. Jeong, K.K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10, 2001239 (2020)

    Article  CAS  Google Scholar 

  5. J.M. Bonard, H. Kind, T. Stöckli, L.O. Nilsson, Field emission from carbon nanotubes: the first five years. Solid-State Electron. 45, 893–914 (2001)

    Article  CAS  Google Scholar 

  6. Y.Y. Shang, C.H. Wang, X.D. He, J.J. Li, Q.Y. Peng, E.Z. Shi, R.G. Wang, S.Y. Du, A.Y. Cao, Y.B. Li, Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy 12, 401–409 (2015)

    Article  CAS  Google Scholar 

  7. N.J. Tang, W. Zhong, C.T. Au, A. Gedanken, Y. Yang, Y.W. Du, Large-scale synthesis, annealing, purification, and magnetic properties of crystalline helical carbon nanotubes with symmetrical structures. Adv. Funct. Mater. 17, 1542–1550 (2007)

    Article  CAS  Google Scholar 

  8. Y. Liu, N.J. Tang, W. Kuo, C.W. Jiang, J.F. Wen, Y.W. Du, N-doped helical carbon nanotubes: single helix photoconductivity and photoluminescence properties. J. Phys. Chem. C 116, 14584–14590 (2012)

    Article  CAS  Google Scholar 

  9. P. Ayala, R. Arenal, A. Loiseau, T. Pichler, A. Rubio, The physical and chemical properties of heteronanotubes. Rev. Mod. Phys. 82, 1843–1885 (2010)

    Article  CAS  Google Scholar 

  10. R.B. Sharma, D.J. Late, D.S. Joag, A. Govindaraj, C.N.R. Rao, Field emission properties of boron and nitrogen doped carbon nanotubes. Chem. Phys. Lett. 428, 102–108 (2006)

    Article  CAS  Google Scholar 

  11. C.N.R. Rao, K. Pramoda, Borocarbonitrides, BxCyNz, 2D nanocomposites with novel properties. Bull. Chem. Soc. Jpn. 92, 441–468 (2019)

    Article  CAS  Google Scholar 

  12. N. Al-Aqtash, I. Vasiliev, Ab initio study of boron- and nitrogen-doped graphene and carbon nanotubes functionalized with carboxyl groups. J. Phys. Chem. C 115, 18500–18510 (2011)

    Article  CAS  Google Scholar 

  13. N. Murata, J. Haruyama, J. Reppert, M. Rao, T. Koretsune, S. Saito, M. Matsudaira, Y. Yagi, Superconductivity in thin films of boron-doped carbon nanotubes. Phys. Rev. Lett. 101, 027002 (2008)

    Article  CAS  Google Scholar 

  14. X.M. Liu, H.E. Romero, H.R. Gutierrez, K. Adu, P.C. Eklund, Transparent boron-doped carbon nanotube films. Nano Lett. 8, 2613–2619 (2008)

    Article  CAS  Google Scholar 

  15. X.M. Liu, H.R. Gutierrez, P.C. Eklund, Measuring the fluorescent quantum efficiency of indocyanine green encapsulated in nanocomposite particulates. J. Phys. Condens. Matter. 22, 334217 (2010)

    Article  Google Scholar 

  16. Z.J. Han, C. Huang, S.S. Meysami, D. Piche, D.H. Seo, S. Pineda, A.T. Murdock, P.S. Bruce, P.S. Grant, N. Grobert, High-frequency supercapacitors based on doped carbon nanostructures. Carbon 126, 305–312 (2018)

    Article  CAS  Google Scholar 

  17. W. Han, Y. Bando, K. Kurashima, T. Sato, Boron-doped carbon nanotubes prepared through asubstitution reaction. Chem. Phys. Lett. 299, 368–373 (1999)

    Article  CAS  Google Scholar 

  18. W.K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y.Q. Zhu, N. Grobert, A. Schilder, R.J.H. Clark, H.W. Krotoa, D.R.M. Walton, Boron-doping effects in carbon nanotubes. J. Mater. Chem. 10, 1425–1429 (2000)

    Article  CAS  Google Scholar 

  19. K. McGuire, N. Gothard, P.L. Gai, M.S. Dresselhaus, G. Sumanasekera, A.M. Rao, Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43, 219–227 (2005)

    Article  CAS  Google Scholar 

  20. P. Ayala, J. Reppert, M. Grobosch, M. Knupfer, T. Pichler, A.M. Rao, Evidence for substitutional boron in doped single-walled carbon nanotubes. Appl. Phys. Lett. 96, 183110 (2010)

    Article  Google Scholar 

  21. P. Ayala, M.H. Rummeli, T. Gemming, E. Kauppinen, H. Kuzmany, T. Pichler, CVD growth of single-walled B-doped carbon nanotubes. Phys. Status Solidi B 245, 1935–1938 (2008)

    Article  CAS  Google Scholar 

  22. P. Ayala, W. Plank, A. Grueneis, E.I. Kauppinen, M.H. Ruemmeli, H. Kuzmany, T. Pichler, A one step approach to B-doped single-walled carbon nanotubes. J. Mater. Chem. 18, 5676–5681 (2008)

    Article  CAS  Google Scholar 

  23. F.B. Meng, Y. Wang, Q. Wang, X.L. Xu, M. Jiang, X.S. Zhou, P. He, Z.W. Zhou, High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: Large-scale synthesis and growth mechanism. Nano Res. 11, 3327–3339 (2018)

    Article  CAS  Google Scholar 

  24. Y.H. Cheng, Y.Y. Tian, X.Z. Fan, J.G. Liu, C.W. Yan, Boron doped multi- walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media. Electrochim. Acta 143, 291–296 (2014)

    Article  CAS  Google Scholar 

  25. L.J. Yang, S.J. Jiang, Y. Zhao, L. Zhu, S. Chen, X.Z. Wang, Q. Wu, J. Ma, Y.W. Ma, Z. Hu, Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50, 7132–7135 (2011)

    Article  CAS  Google Scholar 

  26. Z.H. Sheng, H.L. Gao, W.J. Bao, F.B. Wang, X.H. Xia, Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22, 390–395 (2012)

    Article  CAS  Google Scholar 

  27. Q.H. Yang, W.H. Xu, A. Tomita, T. Kyotani, The template synthesis of double coaxial carbon nanotubes with nitrogen-doped and boron-doped multiwalls. J. Am. Chem. Soc. 127, 8956–8957 (2005)

    Article  CAS  Google Scholar 

  28. C.W. Song, M.Y. You, J.M. Lee, D.S. Cho, P.K. Song, Electrochemical properties and chemical oxygen demand depending on the thickness of boron-doped diamond. Coatings 10, 1097 (2020)

    Article  CAS  Google Scholar 

  29. H.C. Li, K.C. Zhou, J. Cao, Q.P. Wei, C.T. Lin, S.E. Pei, L. Ma, N.X. Hu, Y.H. Guo, Z.J. Deng, Z.M. Yu, S.C. Zeng, W.L. Yang, L.C. Meng, H.C. Li, K.C. Zhou, J. Cao, A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum. Carbon 171, 16–28 (2021)

    Article  Google Scholar 

  30. B. Liu, X.L. Sun, Z.Q. Liao, X.Y. Lu, L. Zhang, G.P. Hao, Nitrogen and boron doped carbon layer coated multiwall carbon nanotubes as high performance anode materials for lithium ion batteries. Nature 11, 5633 (2021)

    CAS  Google Scholar 

  31. X.R. Liu, M.T. Zheng, Y. Xiao, Y.H. Yang, L.F. Yang, Y.L. Liu, B.F. Lei, H.W. Dong, H.R. Zhang, H.G. Fu, Microtube bundle carbon derived from paulownia sawdust for hybrid supercapacitor electrodes. ACS Appl. Mater. Interfaces 5, 4667–4677 (2013)

    Article  CAS  Google Scholar 

  32. S. Shiraishi, M. Kibe, T. Yokoyama, H. Kurihara, N. Patel, A. Oya, Y. Kaburagi, Y. Hishiyama, Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect. Appl. Phys. A 82, 585–591 (2006)

    Article  CAS  Google Scholar 

  33. D.W. Wang, F. Li, Z.G. Chen, G.Q. Lu, H.M. Cheng, Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater. 20, 7195–7200 (2008)

    Article  CAS  Google Scholar 

  34. D.D. Xu, C.X. Xuan, X.Y. Li, Z.B. Luo, Z. Wang, T. Tang, J.F. Wen, M. Li, J.R. Xiao, Novel helical carbon nanotubes-embedded reduced graphene oxide in three-dimensional architecture for high-performance flexible supercapacitors. Electrochim. Acta 339, 135912 (2020)

    Article  CAS  Google Scholar 

  35. C.X. Xuan, X.Y. Li, Z. Wang, H. Wu, T. Tang, J.F. Wen, M. Li, J.R. Xiao, Highly efficient polyaniline trapping and covalent grafting within a three-dimensional porous graphene oxide/helical carbon nanotube skeleton for high-performance flexible supercapacitors. ACS Appl. Energy Mater. 4, 523–534 (2021)

    Article  CAS  Google Scholar 

  36. L. Sun, C.G. Tian, M.T. Li, X.Y. Meng, L. Wang, R.H. Wang, J. Yin, H.G. Fu, From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 1, 6462–6470 (2013)

    Article  CAS  Google Scholar 

  37. W.J. Ma, M. Li, X. Zhou, J.H. Li, Y.M. Dong, M.F. Zhu, Three-dimensional porous carbon nanotubes/reduced graphene oxide fiber from rapid phase separation for a high-rate all-solid-state supercapacitor. ACS Appl. Mater. Interfaces 11, 9283–9290 (2019)

    Article  CAS  Google Scholar 

  38. H.M. Sun, W.H. He, C.H. Zong, L.H. Lu, Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials. ACS Appl. Mater. Interfaces 5, 2261–2268 (2013)

    Article  CAS  Google Scholar 

  39. Z.T. Lin, X.Y. Ren, J.B. Liu, Y. Sui, C.L. Qin, X.K. Jiang, B-doped carbon powder synthesized from PU/PF/GO composite as electrode material for supercapacitors. Powder Mater. Energy 73, 834–846 (2021)

    CAS  Google Scholar 

  40. T. Kwon, H. Nishihara, H. Itoi, Q.H. Yang, T. Kyotani, Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. Langmuir 25, 11961–11968 (2009)

    Article  CAS  Google Scholar 

  41. J. Zhi, M. Zhou, Z. Zhang, O. Reiser, F.Q. Huang, Interstitial boron-doped mesoporous semiconductor oxides for ultratransparent energy storage. Nat. Commun. 12, 445 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Science and Technology Foundation of Guizhou Province (No. LH[2014]7407). Partial support was also from Professor Foundation of Xingyi Normal University for Nationalities (No. 19XYJS06)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhong.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hao, Y. & Zhong, W. Boron-doped helical carbon nanotubes as active supercapacitor cathode materials: preparation and electrochemical properties. J Mater Sci: Mater Electron 32, 25269–25278 (2021). https://doi.org/10.1007/s10854-021-06984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06984-2

Navigation