Skip to main content

Advertisement

Log in

Design of low cost, scalable, and high-performance TiS2 thermoelectric materials via wet ball-milling process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoelectric (TE) materials could provide an efficient means for recovering waste heat energy if a low cost, scalable, and high figure-of-merit material could be fabricated. Here, we report, for the first time, a wet ball-milling method to achieve high-performance two-dimensional (2D) semi-metallic TiS2 nanoplatelets. TiO2 is milled, annealed, and sintered with sulfur under high pressure. The addition of a small amount of sulfur (S) powder during the annealing period prevents sulfur deficiency in the sintered compact, resulting in the formation of a near-stoichiometric TiS2 composition. The formation of 2D TiS2 nanoplatelets was confirmed by X-ray diffraction, field emission scanning electron microscopy with energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. The TE properties were measured in the temperature range of 25–100 °C. Further, we obtain that the prepared TiS2 has as high figure of merit as 0.35 at 100 °C. Novel wet ball mill processing strategies for the development of high-performance 2D materials such as TiS2 make it possible to incorporate these materials for scaled-up device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Veluswamy, S. Sathiyamoorthy, F. Khan, A. Ghosh, M. Abhijit, Y. Hayakawa, H. Ikeda, Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications. Carbohydr. Polym. 157, 1801–1808 (2017)

    Article  CAS  Google Scholar 

  2. S. Sathiyamoorthy, G. Girijakumari, P. Kannan, K. Venugopal, S.T. Shanmugam, P. Veluswamy, K.D. Wael, H. Ikeda, Tailoring the functional properties of polyurethane foam with dispersions of carbon nanofiber for power generator applications. Appl. Surf. Sci. 449, 507–513 (2018)

    Article  CAS  Google Scholar 

  3. I. Hiroya, K. Faizan, V. Pandiyarasan, S. Shota, N. Mani, S. Masaru, M. Kenji, H. Yasuhiro, Thermoelectric characteristics of nanocrystalline ZnO grown on fabrics for wearable power generator. J. Phys. Conf. Ser. 1052(1), 012017 (2018)

    Google Scholar 

  4. F. Trier, D.V. Christensen, N. Pryds, Electron mobility in oxide heterostructures. J. Phys. D Appl. Phys. 51(29), 293002 (2018)

    Article  Google Scholar 

  5. X. Zhang, L.-D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Mater. 1(2), 92–105 (2015)

    Google Scholar 

  6. A.D. LaLonde, Y. Pei, H. Wang, G. Jeffrey Snyder, Lead telluride alloy thermoelectrics. Mater. Today 14(11), 526–532 (2011)

    Article  CAS  Google Scholar 

  7. J.H. Goldsmid, Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7(4), 2577–2592 (2014)

    Article  CAS  Google Scholar 

  8. M.A. Henderson, A surface perspective on self-diffusion in rutile TiO2. Surf. Sci. 419(2), 174–187 (1999)

    Article  CAS  Google Scholar 

  9. S. Wendt, P.T. Sprunger, E. Lira, G.K.H. Madsen, Z. Li, J. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Lægsgaard, B. Hammer, F. Besenbacher, The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320(5884), 1755 (2008)

    Article  CAS  Google Scholar 

  10. R. Amade, P. Heitjans, S. Indris, M. Finger, A. Haeger, D. Hesse, Defect formation during high-energy ball milling in TiO2 and its relation to the photocatalytic activity. J. Photochem. Photobiol. A 207(2), 231–235 (2009)

    Article  CAS  Google Scholar 

  11. S. Bai, N. Zhang, C. Gao, Y. Xiong, Defect engineering in photocatalytic materials. Nano Energy 53, 296–336 (2018)

    Article  CAS  Google Scholar 

  12. J.-D. Peng, P.-C. Shih, H.-H. Lin, C.-M. Tseng, R. Vittal, V. Suryanarayanan, K.-C. Ho, TiO2 nanosheets with highly exposed (001)-facets for enhanced photovoltaic performance of dye-sensitized solar cells. Nano Energy 10, 212–221 (2014)

    Article  CAS  Google Scholar 

  13. G. Fazio, L. Ferrighi, C. Di Valentin, Photoexcited carriers recombination and trapping in spherical vs faceted TiO2 nanoparticles. Nano Energy 27, 673–689 (2016)

    Article  CAS  Google Scholar 

  14. Y. Zhang, J. Liu, Y. Zhang, Y. Bi, Relationship between interatomic electron transfer and photocatalytic activity of TiO2. Nano Energy 51, 504–512 (2018)

    Article  CAS  Google Scholar 

  15. M.K. Nowotny, L.R. Sheppard, T. Bak, J. Nowotny, Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 112(14), 5275–5300 (2008)

    Article  CAS  Google Scholar 

  16. R. Zhang, C. Wan, Y. Wang, K. Koumoto, Titanium sulphene: two-dimensional confinement of electrons and phonons giving rise to improved thermoelectric performance. Phys. Chem. Chem. Phys. 14(45), 15641–15644 (2012)

    Article  CAS  Google Scholar 

  17. A. Amara, Y. Frongillo, M.J. Aubin, S. Jandl, J.M. Lopez-Castillo, J.P. Jay-Gerin, Thermoelectric power of TiS2. Phys. Rev. B 36(12), 6415–6419 (1987)

    Article  CAS  Google Scholar 

  18. C. Wan, Y. Wang, N. Wang, K. Koumoto, Low-thermal-conductivity (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) misfit layer compounds for bulk thermoelectric materials. Materials 3(4), 2606–2617 (2010)

    Article  CAS  Google Scholar 

  19. K. Sánchez, P. Palacios, P. Wahnón, Electronic structure of bulk- and Na-intercalated TiS2 determined from a GGA+U study with the Hubbard terms obtained ab initio. Phys. Rev. B 78(23), 235121 (2008)

    Article  Google Scholar 

  20. H. Imai, Y. Shimakawa, Y. Kubo, Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys. Rev. B 64(24), 241104 (2001)

    Article  Google Scholar 

  21. C. Bourgès, T. Barbier, G. Guélou, P. Vaqueiro, A.V. Powell, O.I. Lebedev, N. Barrier, Y. Kinemuchi, E. Guilmeau, Thermoelectric properties of TiS2 mechanically alloyed compounds. J. Eur. Ceram. Soc. 36(5), 1183–1189 (2016)

    Article  Google Scholar 

  22. M. Ohta, S. Satoh, T. Kuzuya, S. Hirai, M. Kunii, A. Yamamoto, Thermoelectric properties of Ti1+xS2 prepared by CS2 sulfurization. Acta Mater. 60(20), 7232–7240 (2012)

    Article  CAS  Google Scholar 

  23. T. Barbier, O.I. Lebedev, V. Roddatis, Y. Bréard, A. Maignan, E. Guilmeau, Silver intercalation in SPS dense TiS2: staging and thermoelectric properties. Dalton Trans. 44(17), 7887–7895 (2015)

    Article  CAS  Google Scholar 

  24. E. Guilmeau, A. Maignan, C. Wan, K. Koumoto, On the effects of substitution, intercalation, non-stoichiometry and block layer concept in TiS2 based thermoelectrics. Phys. Chem. Chem. Phys. 17(38), 24541–24555 (2015)

    Article  CAS  Google Scholar 

  25. J. Xu, J. Shui, J. Wang, M. Wang, H.-K. Liu, S.X. Dou, I.-Y. Jeon, J.-M. Seo, J.-B. Baek, L. Dai, Sulfur–graphene nanostructured cathodes via ball-milling for high-performance lithium–sulfur batteries. ACS Nano 8(10), 10920–10930 (2014)

    Article  CAS  Google Scholar 

  26. A. Holm, M. Hamandi, F. Simonet, B. Jouguet, F. Dappozze, C. Guillard, Impact of rutile and anatase phase on the photocatalytic decomposition of lactic acid. Appl. Catal. B 253, 96–104 (2019)

    Article  CAS  Google Scholar 

  27. C.S. Cucinotta, K. Dolui, H. Pettersson, Q.M. Ramasse, E. Long, S.E. O’Brian, V. Nicolosi, S. Sanvito, Electronic properties and chemical reactivity of TiS2 nanoflakes. J. Phys. Chem. C 119(27), 15707–15715 (2015)

    Article  CAS  Google Scholar 

  28. S.B. Basuvalingam, Y. Zhang, M.A. Bloodgood, R.H. Godiksen, A.G. Curto, J.P. Hofmann, M.A. Verheijen, W.M.M. Kessels, A.A. Bol, Low-temperature phase-controlled synthesis of titanium di- and tri-sulfide by atomic layer deposition. Chem. Mater. 31(22), 9354–9362 (2019)

    Article  CAS  Google Scholar 

  29. J.A. Rodriguez, J. Hrbek, Z. Chang, J. Dvorak, T. Jirsak, A. Maiti, Importance of O vacancies in the behavior of oxide surfaces: adsorption of sulfur on TiO2 (110). Phys. Rev. B 65(23), 235414 (2002)

    Article  Google Scholar 

  30. C.G. Hawkins, L. Whittaker-Brooks, Controlling sulfur vacancies in TiS2–x cathode insertion hosts via the conversion of TiS3 nanobelts for energy-storage applications. ACS Appl. Nano Mater. 1(2), 851–859 (2018)

    Article  CAS  Google Scholar 

  31. H. Jing, Q. Cheng, J.M. Weller, X.S. Chu, Q.H. Wang, C.K. Chan, Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment. J. Mater. Res. 33, 1–9 (2018)

    Article  Google Scholar 

  32. M. Birkholz, R. Rudert, Interatomic distances in pyrite-structure disulfides—a case for ellipsoidal modeling of sulfur ions. Physica Status Solidi (b) 245(9), 1858–1864 (2008)

    Article  CAS  Google Scholar 

  33. S.G. Kumar, K.S.R.K. Rao, Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process. Nanoscale 6(20), 11574–11632 (2014)

    Article  CAS  Google Scholar 

  34. J. Ma, H. Jin, X. Liu, M.E. Fleet, J. Li, X. Cao, S. Feng, Selective synthesis and formation mechanism of TiS2 dendritic crystals. Cryst. Growth Des. 8(12), 4460–4464 (2008)

    Article  CAS  Google Scholar 

  35. E.M. Logothetis, W.J. Kaiser, C.A. Kukkonen, S.P. Faile, R. Colella, J. Gambold, Hall coefficient and reflectivity evidence that TiS2 is a semiconductor. J. Phys. C Solid State Phys. 12(13), L521 (1979)

    Article  CAS  Google Scholar 

  36. Y. Ye, Y. Wang, Y. Shen, Y. Wang, L. Pan, R. Tu, C. Lu, R. Huang, K. Koumoto, Enhanced thermoelectric performance of xMoS2–TiS2 nanocomposites. J. Alloys Compd. 666, 346–351 (2016)

    Article  CAS  Google Scholar 

  37. J.-H. Pöhls, A. Faghaninia, G. Petretto, U. Aydemir, F. Ricci, G. Li, M. Wood, S. Ohno, G. Hautier, G.J. Snyder, G.-M. Rignanese, A. Jain, M.A. White, Metal phosphides as potential thermoelectric materials. J. Mater. Chem. C 5(47), 12441–12456 (2017)

    Article  Google Scholar 

  38. M. Beaumale, T. Barbier, Y. Bréard, G. Guelou, A.V. Powell, P. Vaqueiro, E. Guilmeau, Electron doping and phonon scattering in Ti1+xS2 thermoelectric compounds. Acta Mater. 78, 86–92 (2014)

    Article  CAS  Google Scholar 

  39. F. Mendizabal, R. Contreras, A. Aizman, A model for the charge capacity of 1T–TiS2 intercalated with Li. Int. J. Quantum Chem. 56(6), 819–823 (1995)

    Article  CAS  Google Scholar 

  40. H. Euchner, S. Pailhès, V.M. Giordano, M. de Boissieu, Understanding lattice thermal conductivity in thermoelectric clathrates: a density functional theory study on binary Si-based type-I clathrates. Phys. Rev. B 97(1), 014304 (2018)

    Article  CAS  Google Scholar 

  41. B. Fu, G. Tang, Y. Li, Electron–phonon scattering effect on the lattice thermal conductivity of silicon nanostructures. Phys. Chem. Chem. Phys. 19(42), 28517–28526 (2017)

    Article  CAS  Google Scholar 

  42. P. Zou, G. Xu, S. Wang, P. Chen, F. Huang, Effect of high pressure sintering and annealing on microstructure and thermoelectric properties of nanocrystalline Bi2Te2.7Se0.3 doped with Gd. Prog. Nat. Sci. Mater. Int. 24(3), 210–217 (2014)

    Article  CAS  Google Scholar 

  43. X. Yan, E. Bauer, P. Rogl, S. Paschen, Influence of hot pressing temperature on thermoelectric properties of type-I clathrates. Physica Status Solidi (a) 211(6), 1282–1287 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea funded by the Korean government (MSIP) (NRF-2015R1A5A1036133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pandiyarasan Veluswamy or Byung Jin Cho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veluswamy, P., Subramanian, S., ul Hassan, M. et al. Design of low cost, scalable, and high-performance TiS2 thermoelectric materials via wet ball-milling process. J Mater Sci: Mater Electron 33, 8822–8832 (2022). https://doi.org/10.1007/s10854-021-06914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06914-2

Navigation