Skip to main content
Log in

Preparation of novel magnetic hydrophobic and lipophilic polyurethane sponge for effective separation of oil/water mixtures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using a simple dipping method, a novel the magnetically driven hydrophobic polyurethane sponge (MHPS) was synthesized in this work. The isodecyl alcohol with longer carbon chain is grafted onto the sponge surface through substitution reaction and condensation reaction, and Fe3O4 nanoparticles are adhered to the sponge to give it magnetism and make it easy to collect. MHPS were characterized by Fourier transformed infrared, X-ray diffraction, scanning electron microscopy and energy dispersive spectrometers. The maximum adsorption capacity for various oils/organic solvents was 24–50 times its own weight. MHPS shows excellent reusability after ten absorption–extrusion-heating cycles. Moreover, it can selectively absorb and continuously remove oil in a wide range of water due to the combination of its high porosity, hydrophobicity and lipophilicity. The magnetism of MHPS makes it easy to collect with magnets. It is believed that MHPS has potential application prospects in oil purification and oil spill removal industry wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Guterman, Exxon Valdez turns 20. Science 323, 1558–1559 (2009)

    Article  CAS  Google Scholar 

  2. Y. Li, H. Chen, Q. Wang, G. Li, Further modification of oil–water separation membrane based on chitosan and titanium dioxide. J. Mater. Sci. Mater. Electron. 324, 4823–4832 (2021)

    Article  CAS  Google Scholar 

  3. Z. Yu, X. Feng, X. Min, X. Li, L. Shao, H. Zeng, RGO/PDA/Bi12O17Cl2–TiO2 composite membranes based on Bi12O17Cl2–TiO2 heterojunctions with excellent photocatalytic activity for photocatalytic dyes degradation and oil–water separation. J. Mater. Sci. Mater. Electron. 30, 18246–18258 (2019)

    Article  CAS  Google Scholar 

  4. S.E. Allan, B.W. Smith, K.A. Anderson, Impact of the deepwater horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environ. Sci. Technol. 46, 2033–2039 (2012)

    Article  CAS  Google Scholar 

  5. A. Syafiq, A.K. Pandey, N. Abd Rahim, B. Vengadaesvaran, S. Shahabuddin, Self-cleaning and weather resistance of nano-SnO2/modified silicone oil coating for photovoltaic (PV) glass applications. J. Mater. Sci. Mater. Electron. 30, 12584–12596 (2019)

    Article  CAS  Google Scholar 

  6. B. Wang, W. Liang, Z. Guo, W. Liu, Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem. Soc. Rev. 44, 336–361 (2015)

    Article  Google Scholar 

  7. J. Aurell, B.K. Gullett, Aerostat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns. Environ. Sci. Technol. 44, 9431–9437 (2010)

    Article  CAS  Google Scholar 

  8. M.A. Zahed, H.A. Aziz, M.H. Isa, L. Mohajeri, S. Mohajeri, Optimal conditions for bioremediation of oily seawater. Bioresour. Technol. 101, 9455 (2010)

    Article  CAS  Google Scholar 

  9. Z. Huang, Z. Zeng, A. Chen, G. Zeng, R. Xiao, P. Xu, K. He, Z. Song, L. Hu, M. Peng, Differential behaviors of silver nanoparticles and silver ions towards cysteine: bioremediation and toxicity to phanerochaetechrysosporium. Chemosphere 203, 199–208 (2018)

    Article  CAS  Google Scholar 

  10. E.B. Kujawinski, M.C.K. Soule, D.L. Valentine, A.K. Boysen, K. Longnecker, M.C. Redmond, Fate of dispersants associated with the deepwater horizon oil spill. Environ. Sci. Technol. 45, 1298–1306 (2011)

    Article  CAS  Google Scholar 

  11. P. Calcagnile, D. Fragouli, I.S. Bayer, G.C. Anyfantis, L. Martiradonna, P.D. Cozzoli, R. Cingolani, A. Athanassiou, Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6, 5413–5419 (2012)

    Article  CAS  Google Scholar 

  12. H. Zhu, S. Qiu, W. Jiang, D. Wu, C. Zhang, Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environ. Sci. Technol. 45, 4527 (2011)

    Article  CAS  Google Scholar 

  13. A. Panda, P. Varshney, S.S. Mohapatra, A. Kumar, Development of liquid repellent coating on cotton fabric by simple binary silanization with excellent self-cleaning and oil–water separation properties. Carbohydr. Polym. 181, 1052–1060 (2018)

    Article  CAS  Google Scholar 

  14. Z. Yin, Y. Li, T. Song, M. Bao, Y. Li, J. Lu, Y. Li, An environmentally benign approach to prepare superhydrophobic magnetic melamine sponge for effective oil/water separation. Sep. Purif. Technol. 236, 116308 (2020)

    Article  CAS  Google Scholar 

  15. R. Du, Q.C. Zhao, P. Li, H.Y. Ren, X. Gao, J. Zhang, Ultrathermostable, magnetic-driven, and superhydrophobic quartz fibers for water remediation. ACS Appl. Mater. Interfaces 8, 1025–1032 (2016)

    Article  CAS  Google Scholar 

  16. I.B. Ivshina, M.S. Kuyukina, A.V. Krivoruchko, A.A. Elkin, S.O. Makarov, C.J. Cunningham, T.A. Peshkur, R.M. Atlas, J.C. Philp, Oil spill problems and sustainable response strategies through new technologies. Environ. Sci. Process. Impacts 17, 1201 (2015)

    Article  CAS  Google Scholar 

  17. A.B. Bourlinos, A. Simopoulos, N. Boukos, D. Petridis, Magnetic modification of the external surfaces in the MCM-41 porous silica: synthesis, characterization, and functionalization. J. Phys. Chem. B 105, 7432–7437 (2001)

    Article  CAS  Google Scholar 

  18. Z. Sun, L.F. Wang, P.P. Liu, S.C. Wang, B. Sun, D.Z. Jiang, F.S. Xiao, Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Adv. Mater. 18, 1968–1971 (2006)

    Article  CAS  Google Scholar 

  19. Q. Zhu, F. Tao, Q. Pan, Fast and selective removal of oils from water surface via highly hydrophobic core–shell Fe2O3@C nanoparticles under magnetic field. ACS Appl. Mater. Interfaces 2, 3141–3146 (2010)

    Article  CAS  Google Scholar 

  20. R. Du, Q. Zhao, Z. Zheng, W. Hu, J. Zhang, 3D Self-supporting porous magnetic assemblies for water remediation and beyond. Adv. Energy Mater. 6, 1600473 (2016)

    Article  CAS  Google Scholar 

  21. L. Wu, L. Li, B. Li, J. Zhang, A. Wang, Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl. Mater. Interfaces 7, 4936–4946 (2015)

    Article  CAS  Google Scholar 

  22. V.H. Pham, J.H. Dickerson, Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl. Mater. Interfaces 6, 14181–14188 (2014)

    Article  CAS  Google Scholar 

  23. Z. Lei, G. Zhang, Y. Ouyang, Y. Liang, Y. Deng, C. Wang, Simple fabrication of multi-functional melamine sponges. Mater. Lett. 190, 119–122 (2017)

    Article  CAS  Google Scholar 

  24. J. Yang, H. Wang, Z. Tao, X. Liu, Z. Wang, R. Yue, Z. Cui, 3D superhydrophobic sponge with a novel compression strategy for effective water-in-oil emulsion separation and its separation mechanism. Chem. Eng. J. 359, 149–158 (2019)

    Article  CAS  Google Scholar 

  25. P. Liu, Y. Zhang, S. Liu, Y. Zhang, Z. Du, L. Qu, Bio-inspired fabrication of fire-retarding, magnetic-responsive, superhydrophobic sponges for oil and organics collection. Appl. Clay Sci. 172, 19–27 (2019)

    Article  CAS  Google Scholar 

  26. J. Shi, Y. Tian, W. Li, Y. Zhao, Y. Wu, Z. Jiang, Plant polyphenol-inspired nano-engineering topological and chemical structures of commercial sponge surface for oils/organic solvents clean-up and recovery. Chemosphere 218, 559–568 (2019)

    Article  CAS  Google Scholar 

  27. H.Y. Mi, X. Jing, H. Xie, H.X. Huang, L.S. Turng, Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation. Chem. Eng. J. 337, 541–551 (2018)

    Article  CAS  Google Scholar 

  28. L. Liu, Y. Pan, B. Bhushan, X. Zhao, Mechanochemical robust, magnetic-driven, superhydrophobic 3D porous materials for contaminated oil recovery. J. Colloid. Interface Sci. 538, 25–33 (2019)

    Article  CAS  Google Scholar 

  29. Y. Yang, Z. Liu, J. Huang, C. Wang, Multifunctional, robust sponges by a simple adsorption–combustion method. J. Mater. Chem. A 3(11), 5875–5881 (2015)

    Article  CAS  Google Scholar 

  30. Q. Ma, H. Cheng, A.G. Fane, R. Wang, H. Zhang, Recent development of advanced materials with special wettability for selective oil/water separation. Small 12, 2186–2202 (2016)

    Article  CAS  Google Scholar 

  31. J.L. Gong, B. Wang, G.M. Zeng, C.P. Yang, C.G. Niu, Q.Y. Niu, W.J. Zhou, Y. Liang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater. 164, 1517–1522 (2009)

    Article  CAS  Google Scholar 

  32. L. Wu, L. Li, B. Li, J. Zhang, A. Wang, Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer spongesfor selective oil absorption andoil/waterseparation. ACS Appl. Mater. Interfaces 7, 4936–4946 (2015)

    Article  CAS  Google Scholar 

  33. W.B. Zhang, Y.Z. Zhu, X. Liu, D. Wang, J.Y. Li, L. Jiang, J. Jin, Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew. Chem. Int. Ed. 53, 856–860 (2014)

    Article  CAS  Google Scholar 

  34. Y. Si, Q.X. Fu, X.Q. Wang, J. Zhu, J.Y. Yu, G. Sun, B. Ding, Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9, 3791–3799 (2015)

    Article  CAS  Google Scholar 

  35. W. Qian, Z. Qian, Z. Li, S.N. Li, L.B. Wu, J.X. Jiang, L.C. Tang, A novel and facile strategy for highly flame retardant polymer foam composite materials: transforming silicone resin coating into silica self-extinguishing layer. J. Hazard. Mater. 336, 222–231 (2017)

    Article  CAS  Google Scholar 

  36. R. Rajeev, S. De, A.K. Bhowmick, B. Gong, S. Bandyopadhyay, Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and thermal studies of the new melamine fiber. J. Adhes. Sci. Technol. 16, 1957–1978 (2002)

    Article  CAS  Google Scholar 

  37. Y. Liu, J. Ma, T. Wu, X. Wang, G. Huang, Y. Liu, H. Qiu, Y. Li, W. Wang, J. Gao, Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl. Mater. Interfaces 5, 10018–10026 (2013)

    Article  CAS  Google Scholar 

  38. G.Q. Xi, T. Liu, C. Ma, Q. Yuan, W. Xin, J.J. Lu, M.G. Ma, Superhydrophobic, compressible, and reusable polyvinyl alcohol-wrapped silver nanowire composite sponge for continuous oil-water separation. Colloids Surf. A Physicochem. Eng. Asp. 583, 124028 (2019)

    Article  CAS  Google Scholar 

  39. L. Liu, Y. Pan, B. Bhushan, X. Zhao, Mechanochemical robust, magnetic-driven, superhydrophobic 3D porous materials for contaminated oil recovery. J. Colloid Interface Sci. 538, 25–33 (2019)

    Article  CAS  Google Scholar 

  40. L. Li, T. Hu, Y. Yang, J. Zhang, Strong, compressible, bendable and stretchable silicone sponges by solvent-controlled hydrolysis and polycondensation of silanes. J. Colloid Interface Sci. 540, 554–562 (2019)

    Article  CAS  Google Scholar 

  41. B. Lin, J. Chen, Z.T. Li, F.A. He, D.H. Li, Superhydrophobic modification of polyurethane sponge for the oil-water separation. Surf. Coat. Technol. 359, 216–226 (2019)

    Article  CAS  Google Scholar 

  42. A. Zhang, M. Chen, C. Du, H. Guo, H. Bai, L. Li, Poly (dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton. ACS Appl. Mater. Interfaces 5, 10201–10206 (2013)

    Article  CAS  Google Scholar 

  43. H. Guan, Z. Cheng, X. Wang, Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12, 10365–10373 (2018)

    Article  CAS  Google Scholar 

  44. K. Hu, T. Szkopek, M. Cerruti, Tuning the aggregation of graphene oxide dispersions to synthesize elastic, low density graphene aerogels. J. Mater. Chem. A 5, 23123–23130 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support provided by the National Natural Science Foundation of China (21671026), the Hunan Provincial Natural Science Foundation of China (2019JJ40310), Research Fund of Science and Technology Innovation Platform of Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province (2020DT008), Project of Changsha City Science and Technology Bureau (kq2004064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dai Yimin or Wan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Zhiheng, W., Yimin, D. et al. Preparation of novel magnetic hydrophobic and lipophilic polyurethane sponge for effective separation of oil/water mixtures. J Mater Sci: Mater Electron 32, 26291–26305 (2021). https://doi.org/10.1007/s10854-021-06894-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06894-3

Navigation