Skip to main content
Log in

Analysis on dielectric loss characteristics of polyvinylidene fluoride and its composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, barium calcium zirconate titanate nanoparticles and nanofibers (denoted as BZT-BCT NPs and BZT-BCT NFs, respectively) were prepared by the sol–gel method and electrospinning, respectively. Under different temperatures and frequencies, the dielectric spectra of polyvinylidene fluoride (PVDF), BZT-BCT NPs, and BZT-BCT NFs composites were measured. On the basis of the experimental data, the polarisation activation energies of the polymer matrix interfacial polarisation and the dipole turn polarisation were calculated, and the basic polarisation characteristic parameters of the polymer matrix materials and fillers were obtained. Moreover, the effects of the filling phase and filling ratio on the dielectric properties of the composites were studied through applying BZT-BCT NPs and BZT-BCT NFs as the filling phases of the PVDF matrix and PVDF matrix composites. Furthermore, the double-layer low-density polyethylene (LDPE)/PVDF composites as well as the LDPE/PVDF composites uniformly mixed at a volume fraction of 1:1 were prepared, and the interfacial polarisation behaviours of the two materials were studied by dielectric spectroscopy to establish an effective analytical method so as to characterize interfacial polarisation established. The experimental results revealed as follows: interfacial polarisation was a significant mechanism of the polarisation behaviour of the composite materials; the fillers with different shape factors had varying effects on the dielectric constant of composites; meanwhile, the dielectric constant of the composite conformed to the predictions of the effective medium theory model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. X.Y. Huang, Core-shell structured high-kpolymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27, 546–554 (2014)

    Article  CAS  Google Scholar 

  2. W. Dong, Preparation and dielectric properties of Ag/PVDF composites. Appl. Surf. Sci. 7, 148–153 (2017)

    Article  Google Scholar 

  3. B.H. Fan, J.W. Zha, D.R. Wang et al., Experimental study and theoretical prediction of dielectric permittivity in BaTiO3/polyimide nanocomposite films. Appl. Phys. Lett. 100, 092903–092904 (2012)

    Article  CAS  Google Scholar 

  4. R. Long, Novel Ferroelectric Polymers for High Energy Density and Low Loss Dielectrics Gill R. Mastering English Literature (Macmillan, London, 1985), pp. 42–45

    Google Scholar 

  5. Y. Song, Y. Shen, H.Y. Liu et al., Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly nanocomposites. J. Mater. Chem. 22, 8063–8068 (2012)

    Article  CAS  Google Scholar 

  6. Y. Feng, W.L. Li, Y.F. Hou et al., Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J Mater Chem C 3, 1250–1260 (2015)

    Article  CAS  Google Scholar 

  7. H.X. Tang, Y.R. Lin, H.A. Sodano, Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv. Energy Mater. 3, 451–456 (2013)

    Article  CAS  Google Scholar 

  8. H.P. Xu, H.Y. Wang, Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/Poly nanocomposite. Appl. Phys. Lett. 90, 012901 (2007)

    Article  CAS  Google Scholar 

  9. X.C. Cheng, Properties and preparation of PVDF composite material. Chin. Ceram. 8(49), 1–5 (2013)

    Google Scholar 

  10. S.B. Wang, T.X. Xu, J.C. Han, Preparation and properties of PZT/PVDF piezoelectric composites. Acta Materiae Compositae Sinica 4(17), 1–5 (2000)

    Google Scholar 

  11. Q. Zhang, D. Brannum, D. Dong et al., Interfacial polarization-induced loss mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics. Chem. Mater. 28, 4646–4660 (2016)

    Article  CAS  Google Scholar 

  12. Z.M. Dang, J.K. Yuan, S.H. Yao et al., Flexible nanodielectric materials with high permitivity for power energy storage. ChemInform 25, 6334–6365 (2013)

    CAS  Google Scholar 

  13. F. Chao, Study of dielectric property on BaTiO3/BADcycomposite. Mater. Chem. Phys. 108, 306 (2008)

    Article  CAS  Google Scholar 

  14. Q.G. Chi, T. Ma, Y. Zhang et al., Significantly enhanced energy storage density 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanofibers. J. Mater. Chem. A 5, 16757–16766 (2017)

    Article  CAS  Google Scholar 

  15. L. Zhang, X. Shan, Dielectric characteristics of CaCu3Ti4O12/P(VDF-Tr FE) nanocomposites. Appl. Phys. A 107, 597–602 (2012)

    Article  CAS  Google Scholar 

  16. Z.K. Heiba, M.M. Ghannam, M.M. Sanad et al., Structural, optical, and dielectric properties of nano-ZnMn2−xVxO4. J. Mater. Sci.: Mater. Electron. 31, 8946–8962 (2020)

    CAS  Google Scholar 

  17. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal et al., Novel cordierite nanopowders of new crystallization aspects and its cordierite-based glass ceramics of improved mechanical and electrical properties for optimal use in multidisciplinary scopes. Mater. Chem. Phys. 162, 299–307 (2015)

    Article  CAS  Google Scholar 

  18. Y. Feng, W.L. Li, J.P. Wang et al., Core-shell structured BaTiO3@carbon hybrid particles for polymer composites with enhanced dielectric performance. J. Mater. Chem. A 3, 20313–20321 (2015)

    Article  CAS  Google Scholar 

  19. Y.T. Zhang, T. Tong, F. Ma et al., Study on the characteristics of the dielectric spectrum of polyvinylidene fluoride. China Plast. 29, 47–52 (2015)

    CAS  Google Scholar 

  20. P. Thomas, K.T. Varughese, K. Dwarakanath et al., Dielectric propertiesof poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539–545 (2010)

    Article  CAS  Google Scholar 

  21. T. Pradip, K. Arpan, B. Biswajoy et al., Enhancement of β Phase crystallization and dielectric behavior of kaolinite/halloysite modified poly(vinylidene fluoride)thin films. Appl. Clay Sci. 99, 149–159 (2014)

    Article  CAS  Google Scholar 

  22. P. Thakur, A. Kool, B. Bagchi et al., The role of cerium(III)/yttrium(III) nitrate hexahydrate salts on electroactive β phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films. RSC Adv. 5, 28487–28496 (2015)

    Article  CAS  Google Scholar 

  23. S.H. Xie, B.K. Zhu, X.Z. Wei et al., Polyimide/BaTiO3 composites with controllable dielectric properties. Composites A 36, 1152–1157 (2005)

    Article  CAS  Google Scholar 

  24. H.G. Lee, H.G. Kim, Influence of microstructure on the dielectric and piezoelectric properties of lead zirconate titanate-polymer composites. Am. Ceram. Soc. 72, 938–942 (1989)

    Article  CAS  Google Scholar 

  25. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal et al., Structural, microstructure, mechanical and electrical properties of porous Zr4+-cordierite ceramic composites. J. Mater. Eng. Perform. 23, 867–874 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liqiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liwei, Z., Na, S., Xuan, W. et al. Analysis on dielectric loss characteristics of polyvinylidene fluoride and its composites. J Mater Sci: Mater Electron 32, 26268–26290 (2021). https://doi.org/10.1007/s10854-021-06893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06893-4

Navigation