Skip to main content

Advertisement

Log in

Thickness effect on the crystallization characteristic of RF sputtered Sb thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The monobasic Sb thin films with different thicknesses were prepared by radio frequency magnetron sputtering. The evolutions of Sb thin film from the amorphous state to the crystalline state were studied by in situ resistance–temperature measurement system. The crystallization temperature, electrical resistance, crystallization activation energy, and data retention capacity of Sb thin films increase significantly with the decrease of film thickness. The optical band gap energy increases and the surface become smoother. The analysis of X-ray diffraction indicates that the grain size becomes smaller and the crystallization may be inhibited by decreasing the film thickness. The prototype phase-change memories based on Sb thin films with different thicknesses were fabricated by CMOS technology. The electrical performances of phase-change memory show that the thinner Sb films have the larger threshold switching voltage and smaller RESET operation voltage, which means the better thermal stability and lower power consumption. The outcomes of this work provide the guidance for designing high-density phase-change memory by reducing the size of Sb thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Wang, T.B. Wang, G.Y. Liu, T.Q. Guo, T. Li, S.L. Lv, Y. Cheng, S.N. Song, K. Ren, Z.T. Song, Scripta Mater. 164, 25–29 (2019)

    Article  Google Scholar 

  2. Z.T. Song, R.B. Wang, Y. Xue, S.N. Song, Nano Res. 164, 25–29 (2021)

    Google Scholar 

  3. L. Wang, Z.G. Liu, C.H. Yang, J. Wen, B.S. Xiong, Appl. Phys. Express. 12, 055002 (2019)

    Article  CAS  Google Scholar 

  4. Y. Saito, A.V. Kolobov, P. Fons, K.V. Mitrofanov, K. Makino, J. Tominaga, J. Robertson, Appl Phys Lett. 114, 132102 (2019)

    Article  Google Scholar 

  5. Y.Y. Lu, D.L. Cai, Y.F. Chen, Y.H. Zheng, S. Yan, L. Wu, Y.G. Liu, Y. Li, Z.T. Song, IEEE Trans. Device Mater. Reliab. 19, 164–168 (2019)

    Article  CAS  Google Scholar 

  6. T. Li, L.C. Wu, Y. Wang, G.Y. Liu, T.Q. Guo, S.N. Song, Z.T. Song, Mater Lett. 247, 60–62 (2019)

    Article  CAS  Google Scholar 

  7. Y.F. Hu, T.S. Lai, H. Zou, X.Q. Zhu, Mater. Res. Express. 6, 025907 (2019)

    Article  Google Scholar 

  8. H. Zou, L.J. Zhai, Y.F. Hu, J.H. Zhang, X.Q. Zhu, Y.M. Sun, Z.T. Song, Appl. Phys. A: Mater. Sci. Process. 124, 717 (2018)

    Article  Google Scholar 

  9. Y. Xue, Y. Cheng, Y.H. Zheng, S. Yan, W. Song, S.L. Lv, S.N. Song, Z.T. Song, Mater. Today Physics. 15, 100266 (2020)

    Article  Google Scholar 

  10. Y. Wang, T.B. Wang, Y.H. Zheng, G.Y. Liu, T. Li, S.L. Lv, W.X. Song, S.N. Song, Y. Cheng, K. Ren, Z.T. Song, Sci Rep. 8, 15136 (2018)

    Article  Google Scholar 

  11. W.H. Wu, S.Y. Chen, J.W. Zhai, J Mater Sci. 52, 11598–11607 (2017)

    Article  CAS  Google Scholar 

  12. J.H. Kim, J.H. Park, D.H. Ko, Thin Solid Films 653, 173–178 (2018)

    Article  CAS  Google Scholar 

  13. X. Chen, Y.H. Zheng, M. Zhu, K. Ren, Y. Wang, T. Li, G.Y. Liu, T.Q. Guo, L. Wu, X.Q. Liu, Y. Cheng, Z.T. Song, Sci Rep. 8, 6839 (2018)

    Article  Google Scholar 

  14. Y. Xue, S. Yan, S.L. Lv, S.N. Song, Z.T. Song, Nano-micro letters. 13, 33 (2021)

    Article  Google Scholar 

  15. H. Zou, Y.F. Hu, X.Q. Zhu, Z.T. Song, RSC Adv. 7, 31110–31114 (2017)

    Article  Google Scholar 

  16. Y.F. Hu, X.Q. Zhu, H. Zou, L. Zheng, S.N. Song, Z.T. Song, J Alloy Compd. 696, 150–154 (2017)

    Article  CAS  Google Scholar 

  17. W. Zhang, D.Y. Wu, Y.F. Hu, A.R. Jiang, J.S. Xu, H. Liu, S.P. Bu, R.H. Shi, J. Mater. Sci.: Mater. Electron. 27, 13148–13153 (2016)

    CAS  Google Scholar 

  18. W.H. Wu, Z.H. Zhao, B. Shen, J.W. Zhai, S.N. Song, Z.T. Song, Nanoscale 10, 7228–7237 (2018)

    Article  CAS  Google Scholar 

  19. H.Y. Cheng, S. Raoux, C.Y.C. Cheng, J Appl Phys. 107, 074308 (2010)

    Article  Google Scholar 

  20. Y.J. Won, J.H. Lee, M. Asheghi, W. Thomas, K.E. Goodson, Appl Phys Lett. 100, 161905 (2012)

    Article  Google Scholar 

  21. Y.F. Hu, Q.Q. Qiu, X.Q. Zhu, T.S. Lai, Appl Surf Sci. 505, 144337 (2020)

    Article  CAS  Google Scholar 

  22. Y.F. Hu, H.P. You, X.Q. Zhu, H. Zou, J.H. Zhang, S.N. Song, Z.T. Song, J Non-cryst Solids. 457, 141–144 (2017)

    Article  CAS  Google Scholar 

  23. W.H. Wu, S.Y. Chen, J.W. Zhai, X.Y. Liu, T.S. Lai, S.N. Song, Z.T. Song, Nanotechnology 28, 405206 (2017)

    Article  Google Scholar 

  24. R. Zhang, Y.F. Hu, X.Q. Zhu, Q.Q. Chou, T.S. Lai, ECS J. Solid State Sci. Technol. 7, 452–455 (2018)

    Article  Google Scholar 

  25. J.H. Zhang, H. Zou, Y.F. Hu, X.Q. Zhu, Y.M. Sun, Z.T. Song, J Mater Sci-mater El. 29, 17003–17007 (2018)

    Article  CAS  Google Scholar 

  26. X. Guo, Y.F. Hu, Q.Q. Chou, T.S. Lai, J. Mater. Sci.: Mater. Electron. 30, 19302–19308 (2019)

    CAS  Google Scholar 

  27. Y.F. Hu, X.Q. Zhu, H. Zou, H.P. You, D.H. Shen, S.N. Song, Z.T. Song, J Alloy Compd. 727, 986–990 (2017)

    Article  CAS  Google Scholar 

  28. X.Q. Zhu, R. Zhang, Y.F. Hu, T.S. Lai, J.H. Zhang, H. Zou, Z.T. Song, Chinese Phys Lett. 35, 056803 (2018)

    Article  Google Scholar 

  29. S.Y. Chen, W.H. Wu, J.W. Zhai, S.N. Song, Z.T. Song, Mater. Sci. Engin. B 218, 59–63 (2017)

    Article  CAS  Google Scholar 

  30. T.Q. Guo, S.N. Song, L. Li, L.L. Shen, B.Y. Wang, B. Liu, Z.T. Song, M. Qi, S.L. Feng, Mater Lett. 169, 203–206 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB510025), China Postdoctoral Science Foundation (2020M671566), Natural Science Foundation of China (12074152), the Opening Project of Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (20YZ06), the Opening Project of Institute of Semiconductors, Chinese Academy of Sciences (KLSMS-1905), and Jiangsu University of Technology Postgraduate Practice Innovation Project (XSJCX20_25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Wu, W., Xu, S. et al. Thickness effect on the crystallization characteristic of RF sputtered Sb thin films. J Mater Sci: Mater Electron 32, 24240–24247 (2021). https://doi.org/10.1007/s10854-021-06889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06889-0

Navigation