Skip to main content

Advertisement

Log in

Third order optical nonlinearities in CdS nanostructured thin films: a comprehensive review

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper is focused on optical nonlinearity in CdS nanostructured thin films, which was reviewed comprehensively and discussed in detail along with future perspective. Due to third harmonic generation in CdS materials on exposed to highly intense light that is significant feature to develop modern photonics devices. CdS chalcogenide semiconductor binary compound is one of the most particularly promising candidate for nonlinear optical applications due to their enhanced nonlinear optical properties in thin films. CdS nanostructured thin films have been shown exceptional third order nonlinear optical (TONLO) behavior near the sub band gap energy region. This review will be based on TONLO properties of CdS nanostructured thin films, which will focus on the tailoring of TONLO properties as a function of particle size, dopant and CdS polymer nanocomposite. Doping and size effect in CdS system is the important opportunity to develop it with excellent TONLO properties. This review paper will give an open area of research possibilities to search the efficient nonlinear optical CdS nanostructured thin films for advanced modern photonics applications and also will provide an idea to develop efficient materials with exceptional TONLO properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

[Fig. 2 reproduce from reference number-53]

Fig. 3

[Fig. 3 reproduce from reference number-54]

Fig. 4

[Fig. 4 reproduce from reference number-55]

Fig. 5

[Reproduce Fig. 5 from reference-61]

Fig. 6

[Fig. 6 reproduce from reference-77]

Fig. 7

[Fig. 7(a–c) reproduce from reference-78]

Fig. 8

[Fig. 8 reproduce from reference-79]

Fig. 9

[Fig. 9 reproduce from reference-88]

Fig. 10

[Fig. 10 reproduce from reference-96]

Fig. 11

[Fig. 11 (a–h) reproduced from reference number 118]

Similar content being viewed by others

References

  1. T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao et al., Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO. J. Phys. D: Appl. Phys. 40(21), 6705–6708 (2007). https://doi.org/10.1088/0022-3727/40/21/033

    Article  CAS  Google Scholar 

  2. J. Wang, W.J. Blau, Inorganic and hybrid nanostructures for optical limiting. J. Opt. A: Pure Appl. Opt. 11(2), 024001 (2009). https://doi.org/10.1088/1464-4258/11/2/024001

    Article  CAS  Google Scholar 

  3. S. Bai, Q. Li, H. Zhang, X. Chen, S. Luo, H. Gong et al., Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Appl. Phys. Lett. 107(14), 141111 (2015)

    Article  CAS  Google Scholar 

  4. Y.H. Wang, S.J. Peng, J.D. Lu, R.W. Wang, Y.L. Mao, Y.G. Cheng, Optical properties of Cu and Ag nanoparticles synthesized in glass by ion implantation. Vacuum 83(2), 408–411 (2008). https://doi.org/10.1016/j.vacuum.2008.05.003

    Article  CAS  Google Scholar 

  5. P.P. Kiran, B. Shivakiran Bhaktha, D.N. Rao, G. De, Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag–Cu nanoclusters co-doped in SiO 2 Sol-Gel films. J. Appl. Phys. 96(11), 6717–6723 (2004)

    Article  CAS  Google Scholar 

  6. D. Li, L. Kong, L. Zhang, X. Yao, Sol–gel preparation and characterization of transparent KTiOPO4/SiO2 nanocomposite glass for second harmonic generation. J. Non-Cryst. Solids 271(1), 45–55 (2000). https://doi.org/10.1016/S0022-3093(00)00105-8

    Article  CAS  Google Scholar 

  7. R. Signorini, R. Bozio, M. Prato, Optical Limiting Applications. Fullerenes: From Synthesis to Optoelectronic Properties (Springer, Dordrecht, 2002), pp. 295–326

    Book  Google Scholar 

  8. R.A. Ganeev, Nonlinear refraction and nonlinear absorption of various media. J. Opt. A: Pure Appl. Opt. 7(12), 717–733 (2005). https://doi.org/10.1088/1464-4258/7/12/004

    Article  CAS  Google Scholar 

  9. N. Zeiri, A. Naifar, S. Abdi-Ben Nasrallah, M. Said, Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots. Photonics Nanostruct. Fundam. Appl. 36, 100725 (2019). https://doi.org/10.1016/j.photonics.2019.100725

    Article  Google Scholar 

  10. Z.R. Khan, Shkir M. Munirah, S. Alfaify, Opto-dielectric-nonlinear properties of Na–Zn–CdS alloys nanostructure thin films: role of Zn doping. Phys. B: Condens. Matter 588, 412194 (2020). https://doi.org/10.1016/j.physb.2020.412194

    Article  CAS  Google Scholar 

  11. A.N. Gheymasi, Y. Rajabi, E.N. Zare, Nonlinear optical properties of poly(aniline-co-pyrrole)@ ZnO-based nanofluid. Opt. Mater. 102, 109835 (2020). https://doi.org/10.1016/j.optmat.2020.109835

    Article  CAS  Google Scholar 

  12. M. Shkir, M. Anis, S. Shafik, M.A. Manthrammel, M.A. Sayeed, M.S. Hamdy et al., An effect of Zn content doping on opto-third order nonlinear characteristics of nanostructured CdS thin films fabricated through spray pyrolysis for optoelectronics. Phys. E 118, 113955 (2020). https://doi.org/10.1016/j.physe.2020.113955

    Article  CAS  Google Scholar 

  13. M. Shkir, Z.R. Khan, M. Anis, S.S. Shaikh, S. AlFaify, A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics. Chin. J. Phys. 63, 51–62 (2020). https://doi.org/10.1016/j.cjph.2019.10.017

    Article  CAS  Google Scholar 

  14. M.A. Manthrammel, M. Shkir, M. Anis, S. Shaikh, H.E. Ali, S. AlFaify, Facile spray pyrolysis fabrication of Al: CdS thin films and their key linear and third order nonlinear optical analysis for optoelectronic applications. Opt. Mater. 100, 109696 (2020)

    Article  CAS  Google Scholar 

  15. M. Thenmozhi, K. Suguna, C. Sekar, Influence of sodium fluoride (NaF) on the crystallization and spectral properties of l-tyrosine. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 84(1), 37–42 (2011). https://doi.org/10.1016/j.saa.2011.08.036

    Article  CAS  Google Scholar 

  16. H.P. Li, C.H. Kam, Y.L. Lam, Y.X. Jie, W. Ji, A.T.S. Wee et al., Nonlinear optical response of Ge nanocrystals in silica matrix with excitation of femtosecond pulses. Appl. Phys. B 72(5), 611–615 (2001). https://doi.org/10.1007/s003400100554

    Article  CAS  Google Scholar 

  17. O. Reshef, I. De Leon, M.Z. Alam, R.W. Boyd, Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 4(8), 535–551 (2019)

    Article  CAS  Google Scholar 

  18. N. Kinsey, J. Khurgin, Nonlinear epsilon-near-zero materials explained: opinion. Opt. Mater. Express 9(7), 2793–2796 (2019). https://doi.org/10.1364/OME.9.002793

    Article  CAS  Google Scholar 

  19. M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97(15), 157403 (2006)

    Article  CAS  Google Scholar 

  20. M.G. Silveirinha, A. Alù, B. Edwards, N. Engheta, Overview of Theory and Applications of Epsilon-Near-Zero Materials. URSI General Assembly: Citeseer, (2008)

  21. R. Liu, Q. Cheng, T. Hand, J.J. Mock, T.J. Cui, S.A. Cummer et al., Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett. 100(2), 023903 (2008)

    Article  CAS  Google Scholar 

  22. R.W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70(4), 046608 (2004)

    Article  CAS  Google Scholar 

  23. J. He, W. Ji, G.H. Ma, S.H. Tang, E.S.W. Kong, S.Y. Chow et al., Ultrafast and large third-order nonlinear optical properties of CdS nanocrystals in polymeric film. J. Phys. Chem. B 109(10), 4373–4376 (2005). https://doi.org/10.1021/jp047787q

    Article  CAS  Google Scholar 

  24. H. Liu, J. Hao, J. Li, J. Cheng, Y. Gao, X. Lin et al., Spectral and nonlinear optical properties of quasi-type II CdSe/CdS nanotadpoles. J. Phys. Chem. C 124(50), 27840–27847 (2020)

    Article  CAS  Google Scholar 

  25. B. Krishnan, S. Shaji, M.C. Acosta-Enríquez, E.B. Acosta-Enríquez, R. Castillo-Ortega, M.E. Zayas et al., Group II–VI semiconductors, in Semiconductors: Synthesis, Properties and Applications. ed. by M.I. Pech-Canul, N.M. Ravindra (Springer International Publishing, Cham, 2019), pp. 397–464

    Chapter  Google Scholar 

  26. A. Ashok, G. Regmi, A. Romero-Núñez, M. Solis-López, S. Velumani, H. Castaneda, Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications. J. Mater. Sci. 31, 1–20 (2020)

    Google Scholar 

  27. Y. Gao, A. Tonizzo, A. Walser, M. Potasek, R. Dorsinville, Enhanced optical nonlinearity of surfactant-capped CdS quantum dots embedded in an optically transparent polystyrene thin film. Appl. Phys. Lett. 92(3), 033106 (2008)

    Article  CAS  Google Scholar 

  28. S. Talwatkar, A. Sunatkari, Y. Tamgadge, G. Muley, Nonlinear Refraction of Nd3+-Li+ Co-Doped CdS-PVP Nanostructure. AIP Conference Proceedings (AIP Publishing LLC, 2018), p. 060004

  29. J. Li, H. Chen, Y. Chen, P. Jiang, C. Wei, J. Shi, Third-order optical nonlinearity of cadmium sulfide nanoparticles loaded in mesostructured silica materials. J. Nanosci. Nanotechnol. 11(12), 10880–10885 (2011)

    Article  CAS  Google Scholar 

  30. F. Qin, C. Yu, J. Li, C. Wei, J. Gu, J. Shi, A two-step surface modification approach for Au and CdS NPs loaded mesoporous thin films and the greatly enhanced optical nonlinearity. Dalton Trans. 39(13), 3233–3238 (2010)

    Article  CAS  Google Scholar 

  31. F. Nan, S. Liang, X.-L. Liu, X.-N. Peng, M. Li, Z.-J. Yang et al., Sign-reversed and magnitude-enhanced nonlinear absorption of Au–CdS core–shell hetero-nanorods. Appl. Phys. Lett. 102(16), 163112 (2013)

    Article  CAS  Google Scholar 

  32. W. Cun-Xiu, F. Shi-Shu, G. Yu-Zong, Large third-order optical nonlinearity of cadmium sulphide nanoparticles embedded in polymer thin films. Chin. Phys. Lett. 26(9), 097804 (2009)

    Article  Google Scholar 

  33. R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, P.S. Patil, Effect of aluminium doping on photoluminescence and third-order nonlinear optical properties of nanostructured CdS thin films for photonic device applications. Phys. B 555, 145–151 (2019). https://doi.org/10.1016/j.physb.2018.11.054

    Article  CAS  Google Scholar 

  34. M. Shkir, M. Anis, S.S. Shaikh, S. AlFaify, An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated. In: CdS thin films. Superlattices Microstruct. 133, 106202 (2019). https://doi.org/10.1016/j.spmi.2019.106202

    Article  CAS  Google Scholar 

  35. H. Algarni, A.E. Al-Salami, A.A. Alshahrani, T.F. Alhuwaymel, A. Al-Mogeeth, A noticeable effect of thickness on third order nonlinear properties of CBD grown CdS thin films investigated by Z-scan measurements. Optik 181, 146–155 (2019). https://doi.org/10.1016/j.ijleo.2018.11.134

    Article  CAS  Google Scholar 

  36. K.V. Chandekar, M. Shkir, T. Alshahrani, A. Khan, S. AlFaify, An in-depth investigation of physical properties of Nd doped CdS thin films for optoelectronic applications. Chin. J. Phys. 67, 681–694 (2020). https://doi.org/10.1016/j.cjph.2020.08.007

    Article  CAS  Google Scholar 

  37. M. Shkir, K.V. Chandekar, A. Khan, A.M. El-Toni, I.M. Ashraf, M. Benghanem et al., Structural, morphological, vibrational, optical, and nonlinear characteristics of spray pyrolyzed CdS thin films: effect of Gd doping content. Mater. Chem. Phys. 255, 123615 (2020). https://doi.org/10.1016/j.matchemphys.2020.123615

    Article  CAS  Google Scholar 

  38. R. Murugesan, S. Sivakumar, K. Karthik, P. Anandan, M. Haris, Effect of Mg/Co on the properties of CdS thin films deposited by spray pyrolysis technique. Curr. Appl. Phys. 19(10), 1136–1144 (2019)

    Article  Google Scholar 

  39. S. Arya, A. Sharma, B. Singh, M. Riyas, P. Bandhoria, M. Aatif et al., Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode. Opt. Mater. 79, 115–119 (2018)

    Article  CAS  Google Scholar 

  40. L. Ma, X. Ai, X. Wu, Effect of substrate and Zn doping on the structural, optical and electrical properties of CdS thin films prepared by CBD method. J. Alloy. Compd. 691, 399–406 (2017). https://doi.org/10.1016/j.jallcom.2016.08.298

    Article  CAS  Google Scholar 

  41. M. Shkir, K.V. Chandekar, A. Khan, A.M. El-Toni, I.M. Ashraf, M. Benghanem et al., Structural, morphological, vibrational, optical, and nonlinear characteristics of spray pyrolyzed CdS thin films: effect of Gd doping content. Mater. Chem. Phys. 255, 123615 (2020). https://doi.org/10.1016/j.matchemphys.2020.123615

    Article  CAS  Google Scholar 

  42. M.S. Khan, A. Aziz, S.A. Rahman, Z.R. Khan, Spectroscopic studies of sol–gel grown CdS nanocrystalline thin films for optoelectronic devices. Mater. Sci. Semicond. Process. 16(6), 1894–1898 (2013)

    Article  CAS  Google Scholar 

  43. Z. Khan, M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, H. Zahran, Linear and nonlinear optics of CBD grown nanocrystalline F doped CdS thin films for optoelectronic applications: an effect of thickness. J. Electron. Mater. 47(9), 5386–5395 (2018)

    Article  CAS  Google Scholar 

  44. S.S. Shaikh, M. Shkir, E.U. Masumdar, Facile fabrication and characterization of modified spray deposited cadmium sulphide thin films. Phys. B 571, 64–70 (2019). https://doi.org/10.1016/j.physb.2019.06.051

    Article  CAS  Google Scholar 

  45. R. Bairy, A. Jayarama, G.K. Shivakumar, K. Radhakrishnan, U.K. Bhat, Investigation of third-order nonlinear optical properties of nanostructured Ni-doped CdS thin films under continuous wave laser illumination. J. Mater. Sci.: Mater. Electron. 30(7), 6993–7004 (2019). https://doi.org/10.1007/s10854-019-01017-5

    Article  CAS  Google Scholar 

  46. T. Chtouki, Y. El Kouari, B. Kulyk, A. Louardi, A. Rmili, H. Erguig et al., Spin-coated nickel doped cadmium sulfide thin films for third harmonic generation applications. J. Alloy. Compd. 696, 1292–1297 (2017). https://doi.org/10.1016/j.jallcom.2016.12.089

    Article  CAS  Google Scholar 

  47. T. Xu, Y. Shen, K. Yin, L. Sun, Precisely monitoring and tailoring 2D nanostructures at the atomic scale. APL Mater. 7(5), 050901 (2019)

    Article  CAS  Google Scholar 

  48. J. Yang, K. Kim, Y. Lee, K. Kim, W.C. Lee, J. Park, Self-organized growth and self-assembly of nanostructures on 2D materials. FlatChem 5, 50–68 (2017). https://doi.org/10.1016/j.flatc.2017.07.004

    Article  CAS  Google Scholar 

  49. Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang et al., Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118(13), 6409–6455 (2018). https://doi.org/10.1021/acs.chemrev.7b00727

    Article  CAS  Google Scholar 

  50. C. Tan, H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6(1), 1–13 (2015)

    Article  CAS  Google Scholar 

  51. K.C. Saraswat, F. Mohammadi, Effect of scaling of interconnections on the time delay of VLSI circuits. IEEE Trans. Electron Devices 29(4), 645–650 (1982)

    Article  Google Scholar 

  52. Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J.W. Haus, H. Zhang et al., Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 795, 1–51 (2019). https://doi.org/10.1016/j.physrep.2019.01.005

    Article  CAS  Google Scholar 

  53. Z. Li, C. Song, Q. Li, X. Xiang, H. Yang, X. Wang et al., Hybrid nanostructured antireflection coating by self-assembled nanosphere lithography. Coatings 9(7), 453 (2019)

    Article  CAS  Google Scholar 

  54. J. Xu, X. Chen, Y. Xu, Y. Du, C. Yan, Ultrathin 2D rare-earth nanomaterials: compositions, syntheses, and applications. Adv. Mater. 32(3), 1806461 (2020)

    Article  CAS  Google Scholar 

  55. J. Azadmanjiri, C.C. Berndt, J. Wang, A. Kapoor, V.K. Srivastava, Nanolaminated composite materials: structure, interface role and applications. RSC Adv. 6(111), 109361–109385 (2016). https://doi.org/10.1039/C6RA20050H

    Article  CAS  Google Scholar 

  56. Z.R. Khan, M. Zulfequar, M.S. Khan, Effect of thickness on structural and optical properties of thermally evaporated cadmium sulfide polycrystalline thin films. Chalcogenide Lett. 7(6), 431–438 (2010)

    CAS  Google Scholar 

  57. Y. Ye, L. Dai, X. Wen, P. Wu, R. Pen, G. Qin, High-performance single CdS nanobelt metal-semiconductor field-effect transistor-based photodetectors. ACS Appl. Mater. Interfaces. 2(10), 2724–2727 (2010). https://doi.org/10.1021/am100661x

    Article  CAS  Google Scholar 

  58. L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao et al., Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater. 22(29), 3161–3165 (2010)

    Article  CAS  Google Scholar 

  59. M. Mahdi, J. Hassan, S. Ng, Z. Hassan, N.M. Ahmed, Synthesis and characterization of single-crystal CdS nanosheet for high-speed photodetection. Phy. E 44(7–8), 1716–1721 (2012)

    Article  CAS  Google Scholar 

  60. K. Heo, H. Lee, Y. Park, J. Park, H.-J. Lim, D. Yoon et al., Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses. J. Mater. Chem. 22(5), 2173–2179 (2012). https://doi.org/10.1039/c2jm14359c

    Article  CAS  Google Scholar 

  61. Z.R. Khan, M. Shkir, A.S. Alshammari, I.M. Ashraf, S. AlFaify, Improved photodetection performance of nanostructured CdS films based photodetectors via novel Er doping. J. Inorg. Organomet. Polym. Mater. (2021). https://doi.org/10.1007/s10904-021-02004-2

    Article  Google Scholar 

  62. I. Ashraf, M.T. Khan, K. Hariprasad, S. Valanarasu, T. Alshahrani, A. Almohammedi et al., Enhancement in photodetection properties of Ag/CdS/Ag devices through novel rare-earth metal Tb doping. Mater. Lett. 285, 129174 (2021)

    Article  CAS  Google Scholar 

  63. M. Shkir, I.M. Ashraf, A. Khan, M.T. Khan, A.M. El-Toni, S. AlFaify, A facile spray pyrolysis fabrication of Sm:CdS thin films for high-performance photodetector applications. Sens. Actuators A 306, 111952 (2020). https://doi.org/10.1016/j.sna.2020.111952

    Article  CAS  Google Scholar 

  64. Y.-J. Yuan, D. Chen, Z.-T. Yu, Z.-G. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 6(25), 11606–11630 (2018). https://doi.org/10.1039/C8TA00671G

    Article  CAS  Google Scholar 

  65. Z. Makhdoumi-Kakhaki, A.A. Youzbashi, P. Sangpour, N. Naderi, The comparison of optical and photodetector properties of Zn, Al and Sn doped and undoped CdS thin films via chemical bath deposition. J. Mater. Sci.: Mater. Electron. 28(18), 13727–13739 (2017). https://doi.org/10.1007/s10854-017-7217-7

    Article  CAS  Google Scholar 

  66. M. Husham, Z. Hassan, A.M. Selman, Synthesis and characterization of nanocrystalline CdS thin films for highly photosensitive self-powered photodetector. Eur. Phys. J. Appl. Phys. 74(1), 10101 (2016)

    Article  CAS  Google Scholar 

  67. C. Pérez-García, S. Meraz-Dávila, E. Chávez-Urbiola, I. Chavez-Urbiola, F. Willars-Rodríguez, R. Ramírez-Bon et al., Chemical deposition of ITO/CdS/PbS/C for low voltage photosensor applications. Int. J. Electrochem. Sci. 13, 3452–3459 (2018)

    Article  CAS  Google Scholar 

  68. J.-B. Seon, S. Lee, J.M. Kim, H.-D. Jeong, Spin-coated CdS thin films for n-channel thin film transistors. Chem. Mater. 21(4), 604–611 (2009). https://doi.org/10.1021/cm801557q

    Article  CAS  Google Scholar 

  69. W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H. Stiegler, M. Quevedo-Lopez, R. Pieper et al., CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64–70 (2016)

    Article  CAS  Google Scholar 

  70. B. Fabbri, A. Gaiardo, V. Guidi, C. Malagù, A. Giberti, Photo-activation of cadmium sulfide films for gas sensing. Procedia Eng. (2014). https://doi.org/10.1016/j.proeng.2014.11.603

    Article  Google Scholar 

  71. S.G. Kumar, K.K. Rao, Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy Environ. Sci. 7(1), 45–102 (2014)

    Article  CAS  Google Scholar 

  72. S. AlFaify, L. Haritha, M.A. Manthrammel, V. Ganesh, K.V. Chandekar, S.S. Shaikh et al., Fabrication and characterization of Sn:CdS films for optical-nonlinear-limiting applications. Opt. Laser Technol. 126, 106122 (2020). https://doi.org/10.1016/j.optlastec.2020.106122

    Article  CAS  Google Scholar 

  73. S.A.-J. Jassim, A.A.R.A. Zumaila, G.A.A. Al Waly, Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation. Results Phys. 3, 173–178 (2013). https://doi.org/10.1016/j.rinp.2013.08.003

    Article  Google Scholar 

  74. S. Rondiya, A. Rokade, A. Funde, M. Kartha, H. Pathan, S. Jadkar, Synthesis of CdS thin films at room temperature by RF-magnetron sputtering and study of its structural, electrical, optical and morphology properties. Thin Solid Films 631, 41–9 (2017). https://doi.org/10.1016/j.tsf.2017.04.006

    Article  CAS  Google Scholar 

  75. Y.Z. Dawood, The influence of substrate temperature on CdS thin films properties prepared by pulse laser deposition on glass substrates. Energy Procedia 119, 536–544 (2017). https://doi.org/10.1016/j.egypro.2017.07.073

    Article  CAS  Google Scholar 

  76. R. Murugesan, S. Sivakumar, K. Karthik, P. Anandan, M. Haris, Structural, optical and magnetic behaviors of Fe/Mn-doped and co-doped CdS thin films prepared by spray pyrolysis method. Appl. Phys. A 125(4), 281 (2019)

    Article  CAS  Google Scholar 

  77. V.V.P. Munaga, T. Krishnan, R.K. Borra, Structural, surface morphological, optical and thermoelectric properties of sol–gel spin coated Zn doped CdS thin films. SN Appl. Sci. 2(4), 552 (2020). https://doi.org/10.1007/s42452-020-2358-3

    Article  CAS  Google Scholar 

  78. I. El Radaf, T.A. Hameed, I. Yahia, Synthesis and characterization of F-doped CdS thin films by spray pyrolysis for photovoltaic applications. Mater. Res. Express 5(6), 066416 (2018)

    Article  CAS  Google Scholar 

  79. Z.R. Khan, M. Zulfequar, M.S. Khan, Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (100) wafers. Mater. Sci. Eng. B 174(1), 145–149 (2010)

    Article  CAS  Google Scholar 

  80. A. Sharma, R. Kumar, B. Bhattacharyya, S. Husale, Hot electron induced NIR detection in CdS films. Sci. Rep. 6(1), 1–6 (2016)

    CAS  Google Scholar 

  81. M. Shkir, I. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, A. Khan, A noticeable effect of Pr doping on key optoelectrical properties of CdS thin films prepared using spray pyrolysis technique for high-performance photodetector applications. Ceram. Int. 46(4), 4652–4663 (2020)

    Article  CAS  Google Scholar 

  82. M.S. de Urquijo-Ventura, M.G.S. Rao, S. Meraz-Davila, J.A.T. Ochoa, M.A. Quevedo-Lopez, R. Ramirez-Bon, PVP-SiO2 and PVP-TiO2 hybrid films for dielectric gate applications in CdS-based thin film transistors. Polymer 191, 122261 (2020). https://doi.org/10.1016/j.polymer.2020.122261

    Article  CAS  Google Scholar 

  83. S. Enayati Maklavani, S. Mohammadnejad, Reduction of interface recombination current for higher performance of p+-CZTSxSe(1–x)/p-CZTS/n-CdS thin-film solar cells using Kesterite intermediate layers. Sol. Energy 204, 489–500 (2020). https://doi.org/10.1016/j.solener.2020.04.096

    Article  CAS  Google Scholar 

  84. R. Bairy, S.D. Kulkarni, M.S. Murari, K.N. Narasimhamurthy, An investigation of third-order nonlinear optical and limiting properties of spray pyrolysis-deposited Co:CdS nanostructures for optoelectronics. Appl. Phys. A 126(5), 380 (2020). https://doi.org/10.1007/s00339-020-03549-8

    Article  CAS  Google Scholar 

  85. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187(4736), 493–494 (1960)

    Article  Google Scholar 

  86. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7(4), 118–119 (1961)

    Article  Google Scholar 

  87. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlička, Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399–404 (2003)

    Article  CAS  Google Scholar 

  88. Z.R. Khan, A.S. Alshammari, M. Shkir, V. Ganesh, S. AlFaify, Enhancement in the photoluminescence, linear and third order nonlinear optical properties of nanostructured Na-CdS thin films for optoelectronic applications. J. Nanopart. Res. 22(4), 1–16 (2020)

    Article  CAS  Google Scholar 

  89. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189–196 (2019). https://doi.org/10.1016/j.jpcs.2019.02.030

    Article  CAS  Google Scholar 

  90. M. Shkir, M.T. Khan, S. AlFaify, Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices. Appl. Nanosci. (2019). https://doi.org/10.1007/s13204-019-00983-w

    Article  Google Scholar 

  91. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26(4), 760–769 (1990)

    Article  CAS  Google Scholar 

  92. M. Shkir, Z.R. Khan, A.S. Alshammari, M. Gandouzi, I.M. Ashraf, S. AlFaify, A comprehensive experimental investigation of La@CdS nanostructured thin films: structural, opto-nonlinear and photodetection properties. Surf. Interfaces 24, 101063 (2021). https://doi.org/10.1016/j.surfin.2021.101063

    Article  CAS  Google Scholar 

  93. M. Shkir, K.V. Chandekar, A. Khan, E.S. Yousef, H.E. Ali, H. Algarni et al., Facile fabrication of novel nanostructured Au@PbI2 thin films and their structure, optical and NLO studies for higher order nonlinear applications. Mater. Chem. Phys. 265, 124458 (2021). https://doi.org/10.1016/j.matchemphys.2021.124458

    Article  CAS  Google Scholar 

  94. G. Boudebs, M. Chis, X.N. Phu, Third-order susceptibility measurement by a new Mach-Zehnder interferometry technique. J. Opt. Soc. Am. B 18(5), 623–627 (2001)

    Article  CAS  Google Scholar 

  95. Y.-R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984)

    Google Scholar 

  96. K.E. Jasim, Third-Order Nonlinear Optical Properties of Quantum Dots. Standards Methods and Solutions of Metrology (IntechOpen, London, 2019)

    Google Scholar 

  97. D. Shimamoto, T. Sakurai, M. Itoh, Y.A. Kim, T. Hayashi, M. Endo et al., Nonlinear optical absorption and reflection of single wall carbon nanotube thin films by Z-scan technique. Appl. Phys. Lett. 92(8), 081902 (2008)

    Article  CAS  Google Scholar 

  98. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n 2 measurements. Opt. Lett. 14(17), 955–957 (1989)

    Article  CAS  Google Scholar 

  99. B. Gu, X.-Q. Huang, S.-Q. Tan, H.-T. Wang, A precise data processing method for extracting χ(3) from Z-scan technique. Opt. Commun. 277(1), 209–213 (2007). https://doi.org/10.1016/j.optcom.2007.05.001

    Article  CAS  Google Scholar 

  100. J.A. Dávila-Pintle, E. Reynoso-Lara, Y.E. Bravo-García, Chopper z-scan technique for elliptic Gaussian beams. Opt. Express 24(18), 21105–21112 (2016). https://doi.org/10.1364/OE.24.021105

    Article  Google Scholar 

  101. J. Xiao, S. Min, W. Yu-Xiao, L. Chang-Wei, Y. Jun-Yi, Z. Xue-Ru et al., Theory of Z -scan technique using Gaussian-Bessel beams with a phase object. Chin. Phys. B 19(7), 074203 (2010). https://doi.org/10.1088/1674-1056/19/7/074203

    Article  Google Scholar 

  102. R.-P. Chen, B. Gu, Y.-M. Xu, J. Wang, H.-T. Wang, Theoretical study on stability of Z-scan technique by use of quasi-one-dimensional slit beam. Optik 122(13), 1152–1158 (2011). https://doi.org/10.1016/j.ijleo.2010.07.016

    Article  CAS  Google Scholar 

  103. M. Balu, J. Hales, D.J. Hagan, E.W.V. Stryland, White-light continuum Z-scan technique for nonlinear materials characterization. Opt. Express 12(16), 3820–3826 (2004). https://doi.org/10.1364/OPEX.12.003820

    Article  CAS  Google Scholar 

  104. W.-P. Zang, J.-G. Tian, Z.-B. Liu, W.-Y. Zhou, F. Song, C.-P. Zhang, Analytic solutions to Z-scan characteristics of thick media with nonlinear refraction and nonlinear absorption. J. Opt. Soc. Am. B 21(1), 63–66 (2004). https://doi.org/10.1364/JOSAB.21.000063

    Article  CAS  Google Scholar 

  105. J.M. Carcione, F. Cavallini, J. Ba, W. Cheng, A.N. Qadrouh, On the Kramers-Kronig relations. Rheol. Acta 58(1–2), 21–28 (2019)

    Article  CAS  Google Scholar 

  106. R.A. Ganeev, Nanostructured Nonlinear Optical Materials: Formation and Characterization (Elsevier, Amsterdam, 2018). https://doi.org/10.1016/C2017-0-01289-2

    Book  Google Scholar 

  107. L. Irimpan, V. Nampoori, P. Radhakrishnan, Spectral and nonlinear optical characteristics of nanocomposites of ZnO–CdS. J. Appl. Phys. 103(9), 094914 (2008)

    Article  CAS  Google Scholar 

  108. M. Krbal, T. Wagner, M. Vlcek, M. Vlcek, M. Frumar, Optical properties and structure of amorphous films Agx(As0.33S0.67−ySey)100−x. J. Non-Cryst. Solids 352(23), 2662–2666 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.03.035

    Article  CAS  Google Scholar 

  109. P. Sharma, S.C. Katyal, Linear and nonlinear refractive index of As–Se–Ge and Bi doped As–Se–Ge thin films. J. Appl. Phys. 107(11), 113527 (2010). https://doi.org/10.1063/1.3428441

    Article  CAS  Google Scholar 

  110. H. Guo, C. Hou, F. Gao, A. Lin, P. Wang, Z. Zhou et al., Third-order nonlinear optical properties of GeS2-Sb2S3-CdS chalcogenide glasses. Opt. Express 18(22), 23275–23284 (2010). https://doi.org/10.1364/OE.18.023275

    Article  CAS  Google Scholar 

  111. X.F. Wang, Z.W. Wang, J.G. Yu, C.L. Liu, X.J. Zhao, Q.H. Gong, Large and ultrafast third-order optical nonlinearity of GeS2–Ga2S3–CdS chalcogenide glass. Chem. Phys. Lett. 399(1), 230–233 (2004). https://doi.org/10.1016/j.cplett.2004.10.024

    Article  CAS  Google Scholar 

  112. M. Etienne, A. Biney, A.D. Walser, R. Dorsinville, D.L. Bauer, V. Balogh-Nair, Third-order nonlinear optical properties of a cadmiun sulfide-dendrimer nanocomposite. Appl. Phys. Lett. 87(18), 181913 (2005)

    Article  CAS  Google Scholar 

  113. F. Qin, J.-L. Shi, C.Y. Wei, J.L. Gu, Large incorporation amount and enhanced nonlinear optical properties of sulfide nanoparticles within mesoporous thin films. J. Mater. Chem. 18(6), 634–636 (2008). https://doi.org/10.1039/B716056A

    Article  CAS  Google Scholar 

  114. T. Wu, C.-H. Li, Y.-Z. Li, Z.-G. Zhang, X.-Z. You, Synthesis, structure and chiroptical study of chiral macrocyclic imine nickel (II) coordination compounds derived from camphor. Dalton Trans. 39(13), 3227–3232 (2010)

    Article  CAS  Google Scholar 

  115. T. Okamoto, H. Koizumi, M. Haraguchi, M. Fukui, A. Otomo, Complex third-order nonlinear optical susceptibility spectrum of a CdS film coat on a silver nanoparticle. Opt. Mater. Express 3(9), 1504–1515 (2013). https://doi.org/10.1364/OME.3.001504

    Article  CAS  Google Scholar 

  116. H. Du, G.Q. Xu, W.S. Chin, L. Huang, W. Ji, Synthesis, characterization, and nonlinear optical properties of hybridized CdS−polystyrene nanocomposites. Chem. Mater. 14(10), 4473–4479 (2002). https://doi.org/10.1021/cm010622z

    Article  CAS  Google Scholar 

  117. M. Feng, H. Zhan, Facile preparation of transparent and dense CdS–silica gel glass nanocomposites for optical limiting applications. Nanoscale 6(8), 3972–3977 (2014). https://doi.org/10.1039/C3NR05424A

    Article  CAS  Google Scholar 

  118. Y. Yang, J. Shi, H. Chen, S. Dai, Y. Liu, Enhanced off-resonance optical nonlinearities of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films. Chem. Phys. Lett. 370(1), 1–6 (2003). https://doi.org/10.1016/S0009-2614(02)01863-8

    Article  CAS  Google Scholar 

  119. M. Shkir, S.S. Shaikh, S. AlFaify, An investigation on optical-nonlinear and optical limiting properties of CdS: an effect of Te doping concentrations for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 30(18), 17469–17480 (2019). https://doi.org/10.1007/s10854-019-02097-z

    Article  CAS  Google Scholar 

  120. A.M. Abdelraheem, M.I. Abd-Elrahman, M. Mohamed, N.M.A. Hadia, E.R. Shaaban, Linear and non-linear optical parameters of diluted magnetic semiconductor CdS0.9Mn0.1 thin film: influence of the film thickness. J. Electron. Mater. 49(3), 1944–1956 (2020). https://doi.org/10.1007/s11664-019-07873-5

    Article  CAS  Google Scholar 

  121. M. Shkir, M. Anis, S.S. Shaikh, M.S. Hamdy, S. AlFaify, Impact of Se doping on optical and third-order nonlinear optical properties of spray pyrolysis fabricated CdS thin films for optoelectronics. Appl. Phys. B 126(7), 121 (2020). https://doi.org/10.1007/s00340-020-07472-x

    Article  CAS  Google Scholar 

  122. S. Mathew, B. Samuel, A. Mujeeb, M. Kailasnath, V.P.N. Nampoori, C.P. Girijavallabhan, Effect of Au coating on optical properties of CdS nanoparticles and their optical limiting studies. Opt. Mater. 72, 673–679 (2017). https://doi.org/10.1016/j.optmat.2017.07.016

    Article  CAS  Google Scholar 

  123. Z.R. Khan, M. Shkir, A.S. Alshammari, V. Ganesh, S. AlFaify, M. Gandouzi, Structural, linear and third order nonlinear optical properties of sol-gel grown Ag-CdS nanocrystalline thin films. J. Electron. Mater. 48, 1–11 (2019)

    Article  CAS  Google Scholar 

  124. Z.R. Khan, A.S. Alshammari, M. Shkir, S. AlFaify, Linear, third order nonlinear optical and photoluminescence properties of Cd0.99Zn0.09S/ZnO nanocomposite thin films for optoelectronics applications. Surf. Interfaces 20, 100561 (2020). https://doi.org/10.1016/j.surfin.2020.100561

    Article  CAS  Google Scholar 

  125. T. Cassano, R. Tommasi, F. Babudri, A. Cardone, G.M. Farinola, F. Naso, High third-order nonlinear optical susceptibility in new fluorinated poly(p-phenylenevinylene) copolymers measured with the Z-scan technique. Opt. Lett. 27(24), 2176–2178 (2002). https://doi.org/10.1364/OL.27.002176

    Article  CAS  Google Scholar 

  126. L. Yang, R. Dorsinville, Q.Z. Wang, W.K. Zou, P.P. Ho, N.L. Yang et al., Third-order optical nonlinearity in polycondensed thiophene-based polymers and polysilane polymers. J. Opt. Soc. Am. B 6(4), 753–756 (1989). https://doi.org/10.1364/JOSAB.6.000753

    Article  CAS  Google Scholar 

  127. S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella et al., Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites. J. Appl. Phys. 88(8), 4469–4475 (2000)

    Article  CAS  Google Scholar 

  128. M. Reichert, H. Hu, M.R. Ferdinandus, M. Seidel, P. Zhao, T.R. Ensley et al., Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide. Optica 1(6), 436–445 (2014). https://doi.org/10.1364/OPTICA.1.000436

    Article  CAS  Google Scholar 

  129. Z.R. Khan, A.S. Alshammari, M. Shkir, V. Ganesh, S. AlFaify, Enhancement in the photoluminescence, linear and third order nonlinear optical properties of nanostructured Na-CdS thin films for optoelectronic applications. J. Nanopart. Res. 22(4), 77 (2020). https://doi.org/10.1007/s11051-020-4769-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author from King Khalid University would like to express their gratitude to Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through Research Groups Program under Grant No. R.G.P.2/110/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. R. Khan.

Ethics declarations

Conflict of interest

There is no conflict of interest in this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z.R., Shkir, M. Third order optical nonlinearities in CdS nanostructured thin films: a comprehensive review. J Mater Sci: Mater Electron 32, 24176–24197 (2021). https://doi.org/10.1007/s10854-021-06885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06885-4

Navigation