Skip to main content
Log in

Thermal stability issue of ultrathin Ti-based silicide for its application in prospective DRAM peripheral 3D FinFET transistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the thermal stability issue of ultrathin Ti-based silicide (TiSix) in prospective dynamic random access memory (DRAM) peripheral 3D FinFET transistors was systematically studied. As-prepared TiSix/n+-Si contacts and ultrathin TiSix films with different annealing temperatures, were characterized by means of specific contact resistivity (ρc), sheet resistance measurement, X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). It is shown that the specific contact resistivity (ρc) for TiSix/n+-Si contacts gradually degrades with the increase of annealing temperature in the range 450–900 °C. In addition, it is revealed that though thick TiSi2 is conventionally known as thermal stable silicide, the agglomeration of ultrathin TiSix in the source/drain regions of 3D FinFETs still occurs after DRAM annealing typically at 750 °C for few hours. This agglomeration is thought to be responsible for the deterioration of ρc for TiSix/n+-Si contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.K. Kim, M. Popovici, MRS Bull. 43, 5 (2018). https://doi.org/10.1557/mrs.2018.95

    Article  Google Scholar 

  2. A. Spessot, R. Ritzenthaler, T. Schram, N. Horiguchi, P. Fazan, Phys. Status Solidi A 213, 2 (2016). https://doi.org/10.1002/pssa.201532791

    Article  CAS  Google Scholar 

  3. A. Spessot, N. Sharan, H. Oh, R. Ritzenthaler, E.D. Litta, B. O'Sullivan, A. Mallik, A. De Keersgieter, B. Parvais, Y. Sherazi, 2018 IEEE International Memory Workshop (IMW), 2018. https://doi.org/10.1109/IMW.2018.8388823

  4. C. Zhao, J.Y. Ahn, N. Horiguchi, S. Demuynck, Z. Tokei, Microelectron. Eng. 85, 10 (2008). https://doi.org/10.1016/j.mee.2008.03.021

    Article  CAS  Google Scholar 

  5. T. Schram, A. Spessot, R. Ritzenthaler, E. Rosseel, C. Caillat, N. Horiguchi, Microelectron. Eng. (2014). https://doi.org/10.1016/j.mee.2013.12.012

    Article  Google Scholar 

  6. A. Spessot, R. Ritzenthaler, E.D. Litta, E. Dupuy, B. O’Sullivan, J. Bastos, E. Capogreco, K. Miyaguchi, V. Machkaoutsan, Y. Yoon, P. Fazan, N. Horiguchi, Jpn. J. Appl. Phys. (2021). https://doi.org/10.35848/1347-4065/abebbf

    Article  Google Scholar 

  7. R. Doering, Y. Nishi, Handbook of Semiconductor Manufacturing Technology (CRC Press, Boca Raton, 2007), pp. 432–433

    Google Scholar 

  8. K. Hamada, VLSI Short Course (2021)

  9. H. Yu, M. Schaekers, A. Peter, G. Pourtois, E. Rosseel, J.-G. Lee, W.-B. Song, K.M. Shin, J.-L. Everaert, S.A. Chew, S. Demuynck, D. Kim, K. Barla, A. Mocuta, N. Horiguchi, A.V.-Y. Thean, N. Collaert, K. De Meyer, IEEE Trans. Electron Devices 63, 12 (2016). https://doi.org/10.1109/ted.2016.2616587

    Article  CAS  Google Scholar 

  10. C. Lavoie, P. Adusumilli, A.V. Carr, J.S.J. Sweet, A.S. Ozcan, E. Levrau, N. Breil, E. Alptekin, ECS Trans. 77, 5 (2017). https://doi.org/10.1149/07705.0059ecst

    Article  CAS  Google Scholar 

  11. D. Woo, IEDM Short Course (2018)

  12. G.-H. Koh, VLSI Short Course (2020)

  13. S.J. Mao, G.L. Wang, J. Xu, X. Luo, D. Zhang, N.Y. Duan, S. Liu, W.W. Wang, D.P. Chen, J.F. Li, C. Zhao, T.C. Ye, J. Luo, IEEE Trans. Electron Devices 65, 10 (2018). https://doi.org/10.1109/ted.2018.2864558

    Article  CAS  Google Scholar 

  14. Y. Wu, H. Xu, X. Gong, Y.-C. Yeo, IEEE Trans. Electron Devices 66, 7 (2019). https://doi.org/10.1109/ted.2019.2917930

    Article  CAS  Google Scholar 

  15. S.M. Song, T.Y. Kim, O.J. Sul, W.C. Shin, B.J. Cho, Appl. Phys. Lett. 104, 18 (2014). https://doi.org/10.1063/1.4875709

    Article  CAS  Google Scholar 

  16. D. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley-IEEE, Hoboken, 2006)

    Google Scholar 

  17. H. Jeon, C.A. Sukow, J.W. Honeycutt, G.A. Rozgonyi, R.J. Nemanich, J. Appl. Phys. 71, 9 (1992). https://doi.org/10.1063/1.350808

    Article  Google Scholar 

  18. T.P. Nolan, R. Sinclair, R. Beyers, J. Appl. Phys. 71, 2 (1992). https://doi.org/10.1063/1.351333

    Article  Google Scholar 

  19. J. Luo, Z.J. Qiu, C.L. Zha, Z. Zhang, D.P. Wu, J. Lu, J. Akerman, M. Ostling, L. Hultman, S.L. Zhang, Appl. Phys. Lett. 96, 3 (2010). https://doi.org/10.1063/1.3291679

    Article  CAS  Google Scholar 

  20. X.W. Yue, L.C. Zhang, Y.Z. Gao, H.Y. Jin, Microelectron. Eng. 85, 8 (2008). https://doi.org/10.1016/j.mee.2008.04.026

    Article  CAS  Google Scholar 

  21. L. Jablonka, T. Kubart, F. Gustavsson, M. Descoins, D. Mangelinck, S.L. Zhang, Z. Zhang, Appl. Phys. Lett. 112, 10 (2018). https://doi.org/10.1063/1.5019440

    Article  CAS  Google Scholar 

  22. C. Lavoie, C. Detavernier, C. Cabral, F.M. d’Heurle, A.J. Kellock, J. Jordan-Sweet, J.M.E. Harper, Microelectron. Eng. 83, 11–12 (2006). https://doi.org/10.1016/j.mee.2006.09.006

    Article  CAS  Google Scholar 

  23. S. Mao, C. Zhao, J. Liu, G. Wang, B. Li, W. Liu, M. Li, Y. Liu, D. Zhang, J. Xu, J. Gao, Y. Li, W. Wang, D. Chen, J. Li, T. Ye, J. Luo, IEEE Trans. Electron Devices 67, 11 (2020). https://doi.org/10.1109/ted.2020.3026986

    Article  CAS  Google Scholar 

  24. H. Yu, L.-L. Wang, M. Schaekers, J.-L. Everaert, Y.-L. Jiang, D. Mocuta, N. Horiguchi, N. Collaert, K. De Meyer, IEEE Electron Device Lett. 38, 7 (2017). https://doi.org/10.1109/led.2017.2700233

    Article  CAS  Google Scholar 

  25. L.J. Chen, Mater. Sci. Eng. R 29, 5 (2000). https://doi.org/10.1016/s0927-796x(00)00023-1

    Article  CAS  Google Scholar 

  26. M.H. Wang, L.J. Chen, J. Appl. Phys. 71, 12 (1992). https://doi.org/10.1063/1.350441

    Article  Google Scholar 

  27. W. Lur, L.J. Chen, Appl. Phys. Lett. 54, 13 (1989). https://doi.org/10.1063/1.100720

    Article  Google Scholar 

  28. H.R. Liauh, M.C. Chen, J.F. Chen, L.J. Chen, J. Appl. Phys. 74, 4 (1993). https://doi.org/10.1063/1.354672

    Article  Google Scholar 

  29. S. Mao, J. Luo, J. Phys. D (2019). https://doi.org/10.1088/1361-6463/ab3dc9

    Article  Google Scholar 

  30. S.J. Mao, J. Xu, G.L. Wang, J. Luo, N.Y. Duan, E. Simoen, H. Radamson, W.W. Wang, D.P. Chen, J.F. Li, C. Zhao, T.C. Ye, ECS J. Solid State Sci. Technol. 6, 9 (2017). https://doi.org/10.1149/2.0321709jss

    Article  CAS  Google Scholar 

  31. K. Kim, C.G. Hwang, J.G. Lee, IEEE Trans. Electron Devices 45, 3 (1998). https://doi.org/10.1109/16.661221

    Article  Google Scholar 

  32. J.S. Maa, Y. Ono, D.J. Tweet, F.Y. Zhang, S.T. Hsu, J. Vac. Sci. Technol. A 19, 4 (2001). https://doi.org/10.1116/1.1372916

    Article  CAS  Google Scholar 

  33. W. Huang, L.C. Zhang, Y.Z. Gao, H.Y. Jin, Microelectron. Eng. 84, 4 (2007). https://doi.org/10.1016/j.mee.2006.11.006

    Article  CAS  Google Scholar 

  34. I. Lee, J. Park, H. Jeon, H. Kim, C. Shin, S. Shin, K. Lee, H. Jeon, J. Vac. Sci. Technol. A 34, 3 (2016). https://doi.org/10.1116/1.4943090

    Article  CAS  Google Scholar 

  35. J. Luo, Z. Qiu, C. Zha, Z. Zhang, D. Wu, J. Lu, J. Åkerman, M. Östling, L. Hultman, S.-L. Zhang, Appl. Phys. Lett. 96, 3 (2010). https://doi.org/10.1063/1.3291679

    Article  CAS  Google Scholar 

  36. F.A. Geenen, K. van Stiphout, A. Nanakoudis, S. Bals, A. Vantomme, J. Jordan-Sweet, C. Lavoie, C. Detavernier, J. Appl. Phys. 123, 7 (2018). https://doi.org/10.1063/1.5009641

    Article  CAS  Google Scholar 

  37. J. Luo, Z.J. Qiu, J. Deng, C. Zhao, J.F. Li, W.W. Wang, D.P. Chen, D.P. Wu, M. Ostling, T.C. Ye, S.L. Zhang, Microelectron. Eng. (2014). https://doi.org/10.1016/j.mee.2013.08.010

    Article  Google Scholar 

  38. Q.B. Liu, G.L. Wang, N.Y. Duan, H. Radamson, H. Liu, C. Zhao, J. Luo, ECS J. Solid State Sci. Technol. 4, 5 (2015). https://doi.org/10.1149/2.0041505jss

    Article  CAS  Google Scholar 

  39. Y. Liu, L. Jinbiao, G. Wang, X. Luo, D. Zhang, S. Mao, Y. Li, J. Li, C. Zhao, W. Wang, B. Gao, D. Chen, T. Ye, J. Luo, ECS J. Solid State Sci. Technol. (2020). https://doi.org/10.1149/2162-8777/ab9a58

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Project of Science and Technology of China under Grant 2017ZX02315001-002, in part by the CAS Pioneer Hundred Talents Program, the Youth Innovation Promotion Association of CAS under Grant Y201926, in part by the opening projects of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Xu or Jun Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, J., Gao, J. et al. Thermal stability issue of ultrathin Ti-based silicide for its application in prospective DRAM peripheral 3D FinFET transistors. J Mater Sci: Mater Electron 32, 24107–24114 (2021). https://doi.org/10.1007/s10854-021-06874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06874-7

Navigation