Skip to main content
Log in

Effect of g-C3N4 on structural, optical, and photocatalytic properties of hexagonal cylinder-like twinned ZnO microcrystals prepared by the hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 11 August 2022

This article has been updated

Abstract

The effect of g-C3N4 on the structural, optical, and photocatalytic properties of ZnO microcrystals under hydrothermal conditions was investigated in this research. The addition of g-C3N4 changed not only the phase composition, but also affect the growth of ZnO crystals, changing the lattice parameter and the transformation of hexagonal cylinder-like twinned ZnO microcrystals (1–2 μm length and 0.5–1 μm diameter) to g-C3N4 amalgamated rice-like ZnO nanostructure (500 nm length and 100 diameter) with type II heterojunction. The optical bandgap was found to be 3.27 and 3.21 eV for pristine ZnO and g-C3N4@ZnO, respectively. Owing to the narrow bandgap (2.7 eV) of g-C3N4, a red shift towards the visible region in optical absorption and a substantial reduction in the optical bandgap was observed for g-C3N4@ZnO heterostructure. Besides, it is also found that g-C3N4@ZnO has significantly higher photocatalytic effect (93 %) on RhB dye degradation than pristine ZnO (70 %) and g-C3N4 (68 %), because it produce a large number of reactive species (·OH and O2•− radicals) by hold-up the recombination of charge carriers via type II heterojunction. This research may be one of the most realistic approaches to developing effective photocatalysts for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches. J. Environ. Manag. 182, 351–366 (2016)

    Article  CAS  Google Scholar 

  2. K.G. Pavithra, P.S. Kumar, V. Jaikumar, P.S. Rajan, Removal of colorants from wastewater: a review on sources and treatment strategies. J. Ind. Eng. Chem. 75, 1–19 (2019)

    Article  CAS  Google Scholar 

  3. N.Y. Donkadokula, A.K. Kola, I. Naz, D. Saroj, A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 19, 543–560 (2020)

    Article  CAS  Google Scholar 

  4. R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manag. 85, 956–964 (2007)

    Article  CAS  Google Scholar 

  5. M.S.S. Danish, L.L. Estrella, I.M.A. Alemaida, A. Lisin, N. Moiseev, M. Ahmadi, M. Nazari, M. Wali, H. Zaheb, T. Senjyu, Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals 11, 80 (2021)

    Article  CAS  Google Scholar 

  6. C.W. Litton, D.C. Reynolds, T.C. Collins, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications (Wiley, Hoboken, 2011)

    Book  Google Scholar 

  7. C. Klingshirn, ZnO: material, physics and applications. Chem. Phys. Chem. 8, 782–803 (2007)

    Article  CAS  Google Scholar 

  8. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide – from synthesis to application: a review. Materials 7, 2833–2881 (2014)

    Article  Google Scholar 

  9. N. Kamarulzaman, M.F. Kasim, R. Rusdi, Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res. Lett. 10, 346 (2015)

    Article  Google Scholar 

  10. C. Wang, Y. Gao, L. Wang, P. Li, Morphology regulation, structural, and photocatalytic properties of ZnO hierarchical microstructures synthesized by a simple hydrothermal method. Phys. Status Solidi A 214, 1600876 (2017)

    Article  Google Scholar 

  11. J. Duraimurugan, G.S. Kumar, M. Venkatesh, P. Maadeswaran, E.K. Girija, Morphology and size controlled synthesis of zinc oxide nanostructures and their optical properties. J. Mater. Sci.: Mater. Electron. 29, 9339–9346 (2018)

    CAS  Google Scholar 

  12. W. Shi, S. Songa, H. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 42, 5714–5743 (2013)

    Article  CAS  Google Scholar 

  13. S. Liu, L. Zhu, W. Cao, P. Li, Z. Zhan, Z. Chen, X. Yuan, J. Wang, Defect-related optical properties of Mg-doped ZnO nanoparticles synthesized via low temperature hydrothermal method. J. Alloys Compd. 858, 157654 (2021)

    Article  CAS  Google Scholar 

  14. Y. Zhang, X. Yang, N. He, P. Zhang, Y. Ding, D. Liu, Z. Zou, J. Gui, One-step hydrothermal fabrication of erythrocyte-like ZnS/ZnO composite with superior visible light photocatalytic performance. Mater. Lett. 228, 305–308 (2018)

    Article  CAS  Google Scholar 

  15. M. Ismael, A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 846, 156446 (2020)

    Article  CAS  Google Scholar 

  16. B. Xu, M.B. Ahmed, J.L. Zhou, A. Altaee, G. Xu, M. Wu, Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: progress, limitations and future directions. Sci. Total Environ. 633, 546–559 (2018)

    Article  CAS  Google Scholar 

  17. S. Le, T. Jiang, Y. Li, Q. Zhao, Y. Li, W. Fang, M. Gong, Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl. Catal. 200, 601–610 (2017)

    Article  CAS  Google Scholar 

  18. P. Yang, J. Wang, G. Yue, R. Yang, P. Zhao, L. Yang, X. Zhao, D. Astruc, Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity. J. Photochem. Photobiol. A. Chem. 388, 112169 (2020)

    Article  Google Scholar 

  19. M.A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, A. Bahadur, M.M.A.L. Anazy, A. Laref, D. Li, Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations. Colloids Surf: A Physicochem. Eng. Asp. 614, 126176 (2021)

    Article  CAS  Google Scholar 

  20. R. Manimozhi, M. Mathankumar, A.P.G. Prakash, Synthesis of g-C3N4/ZnO heterostructure photocatalyst for enhanced visible degradation of organic dye, Optik 229, 165548 (2021).

    Article  CAS  Google Scholar 

  21. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017)

    Article  Google Scholar 

  22. M. Nishikawa, S. Yuto, T. Nakajima, T. Tsuchiya, N. Saito, Effect of lattice distortion on photocatalytic performance of TiO2. Catal. Lett. 147, 292–300 (2017)

    Article  CAS  Google Scholar 

  23. S.N. Basahel, T.T. Ali, M. Mokhtar, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 10, 73 (2015)

    Article  Google Scholar 

  24. R. Boppella, K. Anjaneyulu, P. Basak, S.V. Manorama, Facile synthesis of face oriented ZnO crystals: tunable polar facets and shape induced enhanced photocatalytic performance. Phys. Chem. C 117, 4597–4605 (2013)

    Article  CAS  Google Scholar 

  25. D.F. Li, W.Q. Huang, L.R. Zou, G.F. Huang, Mesoporous g-C3N4 nanosheets: synthesis, superior adsorption capacity and photocatalytic activity. J. Nanosci. Nanotechnol. 18, 5502–5510 (2018)

    Article  CAS  Google Scholar 

  26. J. Duraimurugan, G.S. Kumar, P. Maadeswaran, S. Shanavas, P.M. Anbarasan, V. Vasudevan, Structural, optical and photocatlytic properties of zinc oxide nanoparticles obtained by simple plant extract mediated synthesis. J. Mater. Sci.: Mater. Electron. 30, 1927–1935 (2019)

    CAS  Google Scholar 

  27. C. Suryanarayana, M.G. Norton, X-Ray Diffraction A Practical Approach (Springer, Boston, 1998)

    Google Scholar 

  28. Q. Zhong, H. Lan, M. Zhang, H. Zhu, M. Bu, Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr(VI) and eosin). Ceram. Inter. 46, 12192–12199 (2020)

    Article  CAS  Google Scholar 

  29. D.J. Martin, K. Qiu, S.A. Shevlin, Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 53, 9240–9245 (2014)

    Article  CAS  Google Scholar 

  30. J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Eden Prairie, 1992)

    Google Scholar 

  31. Y. Yang, J. Chen, Z. Mao, N. An, D. Wang, B.D. Fahlman, Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis. RSC Adv. 7, 2333–2341 (2017)

    Article  CAS  Google Scholar 

  32. T. Prakash, G. Neri, A. Bonavita, E. Ranjith Kumar, K. Gnanamoorthi, Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method. J. Mater. Sci.: Mater. Electron. 26, 4913–4921 (2015)

    CAS  Google Scholar 

  33. Y. Köseoğlua, A simple microwave-assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nanoplatelets. Ceram. Int. 40, 4673–4679 (2014)

    Article  Google Scholar 

  34. A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, J.S. Aananda, Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155–1161 (2017)

    Article  CAS  Google Scholar 

  35. M. Ismael, The photocatalytic performance of the ZnO/g-C3N4 composite photocatalyst, toward degradation of organic pollutants and its inactivity toward hydrogen evolution: The influence of light irradiation and charge transfer. Chem. Phy. Lett. 739, 136992 (2020)

    Article  CAS  Google Scholar 

  36. C.B. Ong, L.Y. Ng, A.W. Mohamm, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    Article  CAS  Google Scholar 

  37. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Vijayakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10418.9 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, T.P., Benoy, M.D., Duraimurugan, J. et al. Effect of g-C3N4 on structural, optical, and photocatalytic properties of hexagonal cylinder-like twinned ZnO microcrystals prepared by the hydrothermal method. J Mater Sci: Mater Electron 32, 24095–24106 (2021). https://doi.org/10.1007/s10854-021-06872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06872-9

Navigation