Skip to main content
Log in

Study on the mechanism of large-scale microwave absorption of ferroferric oxide coated with nano-SiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the continuous development of nanomaterials technology, the research on electromagnetic absorption of nanomaterials dispersed in large-scale sea has important application value. Therefore, the wave absorption mechanism of nano-silica-coated ferroferric oxide (Fe3O4@SiO2) powder in large scale space is studied. By calculating the area of absorption cross-section and scattering cross-section of a single core-shell Fe3O4@SiO2 composite particle with seawater as the background medium, and the wave absorption property of core-shell Fe3O4@SiO2composite particles is analyzed from the microscopic aspect. Then, the wave-absorbing properties of core-shell Fe3O4@SiO2 composite particles dispersed in the large-scale sea with the size of 3 m are studied, and the absorbing loss is calculated, and the absorbing mechanism is further analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Zou, Y. Wu, H. Li, Electromagnetic and microwave absorbing properties of carbon-encapsulated cobalt nanoparticles. Mater. Lett. 214, 280–282 (2017)

    Article  Google Scholar 

  2. G. Ban, Z. Liu, S. Ye et al., Research progress of new coated radar absorbing materials. Surf. Technol. 45(6), 140–146 (2016)

    Google Scholar 

  3. M. Jazirehpour, S.A. Seyyed Ebrahimi, Carbothermally synthesized core-shell carbon-magnetite porous nanorods for high-performance electromagnetic wave absorption and the effect of the heterointerface. J. Alloys Compd. 639(5), 280–288 (2015)

    Article  CAS  Google Scholar 

  4. W. Funke, Problems and progress in organic coatings science and technology. Prog. Org. Coat. 31(1), 5–9 (1997)

    Article  CAS  Google Scholar 

  5. W. Funck, H. Leidheiser, R.A. Dickie, Unsovled problems of corrosion protection by organic coatings, a: discussion. J. Coat. Technol. 58(741), 79–86 (1986)

    Google Scholar 

  6. C.G. Jayalakshmi, A. Inamdar, A. Anand et al., Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. 136(14), 47241 (2019)

    Google Scholar 

  7. C. Li, Z. Li, X. Qi et al., A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 605, 13–22 (2021)

    Article  Google Scholar 

  8. X. Wang, Z. Shi, B. Xu et al., Study of wave-absorbing coating failure by electrochemical measurements. J. Mater. Eng. Perform. 28(45), 7086–7096 (2019)

    Article  CAS  Google Scholar 

  9. J. He, W. Wang, J. Guan, Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz. J. Appl. Phys. 111(9), 1032 (2012)

    Google Scholar 

  10. P.A. Yang, Liu et al., Flower-like carbonyl iron powder modified by nanoflakes: preparation and microwave absorption properties. Appl. Phys. Lett. 106, 161904 (2015)

    Article  Google Scholar 

  11. L. Zhenhai, T. Lizi, Handbook of Analytical Chemistry (Volume 6, Thermal Analysis) (Chemical Industry Press, Beijing, 1994), p. 164

    Google Scholar 

  12. Y.C. Qing, W.C. Zhou, S. Jia et al., Effect of heat treatment on the microwave electromagnetic properties of carbonyl iron/epoxy-silicone resin coatings. J. Mater. Sci. Technol. 11(26), 1011–1015 (2010)

    Article  Google Scholar 

  13. Q. Yuchang, Z. Wancheng, J. Shu et al., Microwave electromagnetic property of SiO2-coated carbonyl iron particles with higher oxidation resistance. Phys. B 406(4), 777–780 (2011)

    Article  Google Scholar 

  14. J. Zhang, Z. Li, X. Qi et al., Constructing flower-like core@ shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B Eng. 222, 109067 (2021)

    Article  Google Scholar 

  15. X. Ni, Z. Zheng, X. Hu et al., Silica-coated iron nanocubes: preparation, characterization and application in microwave absorption. J. Colloid Interface Sci. 341(1), 18–22 (2010)

    Article  CAS  Google Scholar 

  16. Z. Qian, L. Ming, Effect of Nano-SiO2 coating on electromagnetic properties of carbonyl iron powder. Ordnance Mater. Sci. Eng. 36(06), 91–93 (2013)

    Google Scholar 

  17. T. Guoxiu, W. Wei, G. Jianguo et al., Effect of thickness of SiO2 nano shell on properties of carbonyl iron/SiO2 core shell composite particles. J. Inorg. Mater. 06, 1461–1466 (2006)

    Google Scholar 

  18. W. Li, C. Le, J. Lv et al., Electromagnetic and oxidation resistance properties of core-shell structure flaked carbonyl iron powder@SiO2 nanocomposite. Phys. Status Solidi 214(6), 1600747 (2017)

    Article  Google Scholar 

  19. Y. Honghao, S. Xinhua, W. Yang, Study on wave absorption properties of carbonyl iron and SiO2 coated carbonyl iron particles. AIP Adv. 8(6), 065322 (2018)

    Article  Google Scholar 

  20. M. Wu, A.K. Darboe, X. Qi et al., Optimization, selective and efficient production of CNTs/CoxFe3−xO4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 8(34), 11936–11949 (2020)

    Article  CAS  Google Scholar 

  21. Y. Ren, C. Zhu, S. Zhang et al., Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale 5(24), 12296–12303 (2013)

    Article  CAS  Google Scholar 

  22. W. Lei, H. Ying, D. Xiao et al., Supraparamagnetic quaternary nanocomposites of graphene@Fe3O4@SiO2@SnO2: synthesis and enhanced electromagnetic absorption properties. Mater. Lett. 109(15), 146–150 (2013)

    Article  Google Scholar 

  23. X. Liu, Y. Chen, C. Hao et al., Graphene-enhanced microwave absorption properties of Fe3O4/SiO2 nanorods. Compos. A Appl. Sci. Manuf. 89, 40–46 (2016)

    Article  CAS  Google Scholar 

  24. X. Song, X. Li, H. Yan, Study on absorbing wave of Fe3O4/MWCNTs nanoparticles based on large-scale space. J. Mater. Sci. Mater. Electron. 31(3), 2666–2675 (2020)

    Article  CAS  Google Scholar 

  25. X. Song, H. Yan, X. Li et al., Study on the factors of large-scale space wave absorption of MWCNTs/Fe3O4 nanocomposite particles. J. Mater. Sci. Mater. Electron. 31, 22727–22739 (2020)

    Article  CAS  Google Scholar 

  26. T. Yimin, Oceanography (China Agricultural Publishing House, Beijing, 2002), pp. 41–43

    Google Scholar 

  27. X. Song, X. Li, H. Yan, Preparation and microwave absorption properties of MWCNTs/Fe3O4/NBR composites. Diam. Relat. Mater. 100, 107573 (2019)

    Article  CAS  Google Scholar 

  28. C.C. Chauhan, A.R. Kagdi, R.B. Jotania et al., Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase. Ceram. Int. 4, 17812–17823 (2018)

    Article  Google Scholar 

  29. L. Shunhua, L. Junmin, D. Xinglong et al., Electromagnetic Wave Shielding and Absorbing Materials (Chemical Industry Press, Beijing, 2014), pp. 141–159

    Google Scholar 

  30. X.F. Zhang, X.L. Dong, H. Huang et al., Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89(5), 1083–1679 (2006)

    Article  Google Scholar 

  31. H. Yan, X. Song, X. Wang et al., Electromagnetic wave absorption and scattering analysis for Fe3O4 with different scales particles. Chem. Phys. Lett. 723, 51–56 (2019)

    Article  CAS  Google Scholar 

  32. A. Sihvola, I.V. Lindell, Transmission line analogy for calculating the effective permittivity of mixtures with spherical multilayer scatterers. J. Electromagn. Waves Appl. 2(8), 741–756 (1988)

    Google Scholar 

  33. X. Song, X. Li, H. Yan, Absorbance analysis of Fe3O4 particles of different scales in silicone rubber at Ku band. Results Phys. 15, 102541 (2019)

    Article  Google Scholar 

  34. A. Priou, Dielectric Properties of Heterogeneous Mixtures (Elsevier, New York, 1991), pp. 101–152

    Google Scholar 

  35. L.I. Liben, F. Huang, L.U. Xiaomei et al., Maxwell–Wagner mechanism induced dielectric relaxor in BiFeO3/Bi3.25La0.75Ti3O12 film. Integr. Ferroelectr. 110(1), 25–33 (2009)

    Article  Google Scholar 

  36. G.H. Tan, C.H. Rohner, Low-frequency array active-antenna system[C]//radio telescopes. Int. Soc. Opt. Photonics 4015, 446–457 (2000)

    Google Scholar 

  37. R. Somaraju, J. Trumpf, Frequency, temperature and salinity variation of the permittivity of seawater. IEEE Trans. Antennas Propag. 54(11), 3441–3448 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (Grant Nos. 12072067, 11672068 and 11672067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Yongjun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xinhua, S., Feng, W., Haiyang, Z. et al. Study on the mechanism of large-scale microwave absorption of ferroferric oxide coated with nano-SiO2. J Mater Sci: Mater Electron 32, 24083–24094 (2021). https://doi.org/10.1007/s10854-021-06870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06870-x

Navigation