Skip to main content
Log in

Intrinsic dielectric properties and lattice vibrational characteristics of single phase BaTiO3 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A single phase BaTiO3 ceramic was prepared by traditional solid-state sintering process at 1220 °C for 4 h. XRD analysis results show that the obtained sample is tetragonal phase BaTiO3, the space group belongs to P4mm (No. 99). Lattice vibrational characteristics of BaTiO3 ceramic were revealed according to Raman and far-infrared spectroscopy. By fitting far infrared data with 4-P model, the dielectric constant (εr) of BaTiO3 ceramic is 20.0782, while its dielectric loss (tanδ) is 19.9756 × 10−4. The peak at 181 cm−1 has the greatest impact on the dielectric constant and dielectric loss. The theoretical dielectric properties of BaTiO3 ceramic were calculated by C–M and damping formulas, which εr = 20.1030 and tanδ = 19.1672 × 10−4. However, the theoretical data are too far different from the tested data, which is because the asymmetrical structure inside the tetragonal phase BaTiO3 generates spontaneously polarize along the C axis, forming a ferroelectric domain and resulting in an increase in the dielectric constants, and thus the dielectric loss also increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.K. Deshpande, S.N. Borkar, Study of dielectric and ferroelectric properties of barium titanate with glass addition for energy storage application. Ferroelectrics 571(1), 109–119 (2021)

    Article  CAS  Google Scholar 

  2. P. Jaita, N. Boothrawong, N. Lertcumfu et al., Electrical and mechanical properties of modified barium titanate by doping an m-type hexagonal ferrites. Integr. Ferroelectr. 214(1), 2–10 (2020)

    Article  Google Scholar 

  3. A. Ali, S. Uddin, Z. Iqbal et al., Structural, optical and microwave dielectric properties of barium tetra titanate (BaTi4O9) ceramics. J. Optoelectron. Adv. Mater. 23(1–2), 48–52 (2021)

    CAS  Google Scholar 

  4. D. Ehre, V. Lyahovitskaya, A. Tagantsev et al., Amorphous piezo and pyroelectric phases of BaZrO3 and SrTiO3. Adv. Mater. 19(11), 1515–1527 (2007)

    Article  CAS  Google Scholar 

  5. V. Karol, C. Prakash, A. Sharma, Observation of high dielectric properties of Mg-substituted BST ceramic synthesized by conventional solid-state route. J. Mater. Sci. Mater. Electron. 7, 1–9 (2021)

    Google Scholar 

  6. Z. Cao, E.C. Xiao, X.H. Li et al., Lattice vibrational characteristics, crystal structures and dielectric properties of non-stoichiometric Nd(1+x)(Mg1/2Sn1/2)O3 ceramics. Journal of Materiomics 6(3), 476–484 (2020)

    Article  Google Scholar 

  7. H.L. Dong, F. Shi, Vibration spectra and structural characteristics of Ba[(Zn1xMgx)1/3Nb2/3]O3 solid solutions. Appl. Spectrosc. Rev. 46(3), 207–221 (2011)

    Article  Google Scholar 

  8. C. Xing, J. Li, J. Wang et al., Internal relations between crystal structures and intrinsic properties of nonstoichiometric Ba1+xMoO4 ceramics. Inorg. Chem. 57(12), 7121–7128 (2018)

    Article  CAS  Google Scholar 

  9. H. Zhang, C. Diao, S. Liu et al., XRD and Raman study on crystal structures and dielectric properties of Ba[Mg(1x)/3ZrxNb2(1x)/3]O3 solid solutions. Ceram. Int. 40(1), 2427–2434 (2014)

    Article  CAS  Google Scholar 

  10. J. Akedo, H. Ohsato, T. Shimada et al., Research of nano-scaled transition metal oxide resistive nonvolatile memory. Adv. Multifunct. Mater. Syst. II, 129–135 (2010)

    Google Scholar 

  11. L.W. Chu, K.N. Prakash, M.T. Tsai et al., Dispersion of nano-sized BaTiO3 powders in nonaqueous suspension with phosphate ester and their applications for MLCC. J. Eur. Ceram. Soc. 28(6), 1205–1212 (2008)

    Article  CAS  Google Scholar 

  12. H. Chaib, Surface effect on the electrical and optical properties of barium titanate at room temperature. Phys. Rev. B 71(8), 85418–85421 (2005)

    Article  Google Scholar 

  13. M.A. Mccormick, E.B. Slamovich, Effect of precursor pyrolysis on the dielectric properties of hydrothermally derived barium titanate thin films. Chem. Inform. 31(38), 442–444 (2010)

    Google Scholar 

  14. M. Schubert, N. Ashkenov, T. Hofmann et al., Electro-optical properties of Zno–BaTiO3–ZnO heterostructures grown by pulsed laser deposition. Ann. Phys. 13(1–2), 61–72 (2010)

    Google Scholar 

  15. Y.H. Xie, Y.Y. Lin, T.A. Tang, Characteristics of BST thin film prepared by novel chemical solution deposition method for high-density DRAM application. Integr. Ferroelectr. 47(1), 113–124 (2002)

    Article  CAS  Google Scholar 

  16. E. Pakizeh, Optical response and structural properties of Fe-doped Pb(Zr0.52Ti0.48)O3 nanopowders. J. Mater. Sci. Mater. Electron. 31(6), 4872–4881 (2020)

    Article  CAS  Google Scholar 

  17. E. Pakizeh, M. Moradi, Effect of particle size on the optical properties of lead zirconate titanate nanopowders. J. Am. Ceram. Soc. 101(12), 5335–5345 (2018)

    Article  CAS  Google Scholar 

  18. E. Pakizeh, M. Moradi, A. Ahmadi, Effect of sol–gel PH on XRD peak broadening, lattice strain, ferroelectric domain orientation, and optical bandgap of nanocrystalline Pb1.1(Zr0.52Ti0.48)O3. J. Phys. Chem. Solids 75(2), 174–181 (2014)

    Article  CAS  Google Scholar 

  19. S.P. More, R.J. Topare, The review of various synthesis methods of barium titanate with the enhanced dielectric properties, in Proceeding of International Conference on Condensed Matter and Applied Physics, F, 2016

  20. A.S. Anokhin, A.V. Es’kov, O.V. Pakhomov et al., Electrocaloric effect and dielectric properties in ferroelectric ceramics based on solid solution of barium-calcium titanate. J. Phys. Conf. Ser. 1400(7), 077004 (1–5) (2019)

    Google Scholar 

  21. Y. Yan, G. Liu, Electrical and mechanical properties of alumina mixed BaTiO3 ceramics incorporating nano-sized powders. Ferroelectrics 478(1), 132–139 (2015)

    Article  CAS  Google Scholar 

  22. X. Wang, M. Gu, B. Yang et al., Hall effect and dielectric properties of Mn-doped barium titanate. Microelectron. Eng. 66(1/4), 855–859 (2003)

    CAS  Google Scholar 

  23. S. Jayanthi, T.R.N. Kutty, Dielectric properties of 3d transition metal substituted BaTiO3 ceramics containing the hexagonal phase formation. J. Mater. Sci. Mater. Electron. 19(7), 615–626 (2008)

    Article  CAS  Google Scholar 

  24. A. Rani, J. Kolte, P. Gopalan, Phase formation, microstructure, electrical and magnetic properties of Mn substituted barium titanate. Ceram. Int. 41(10), 14057–14063 (2015)

    Article  CAS  Google Scholar 

  25. D.Y. Lu, S.Z. Cui, Defects characterization of Dy-doped BaTiO3 ceramics via electron paramagnetic resonance. J. Eur. Ceram. Soc. 34(10), 2217–2227 (2014)

    Article  CAS  Google Scholar 

  26. A.S. Shaikh, R.W. Vest, Defect structure and dielectric properties of Nd2O3-modified BaTiO3. J. Am. Ceram. Soc. 69(9), 689–694 (1986)

    Article  CAS  Google Scholar 

  27. Q. Zhang, J. Chen, M. Che, Dielectric properties of barium titanium ceramics doped by lanthanum oxide. Ferroelectrics 566, 30–41 (2020)

    Article  CAS  Google Scholar 

  28. O.V. Malyshkina, G.S. Shishkov, A.I. Ivanova et al., Multiferroic ceramics based on barium titanate and barium ferrite. Ferroelectrics 569(1), 215–221 (2020)

    Article  CAS  Google Scholar 

  29. W. An, T.H. Liu, C.H. Wang et al., Assignment for vibrational spectra of BaTiO3 ferroelectric ceramic based on the first-principles calculation. Acta Phys. Chim. Sin. 31(6), 522–530 (2015)

    Google Scholar 

  30. M. Didomenico, S.H. Wemple, S.P.S. Porto et al., Raman spectrum of single-domain BaTiO3. Phys. Rev. 174(2), 522–530 (1968)

    Article  CAS  Google Scholar 

  31. U. Venkateswaran, V. Naik, R. Naik, High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58(58), 14256–14260 (1998)

    Article  CAS  Google Scholar 

  32. U.A. Joshi, S. Yoon, S. Baik et al., Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. J. Phys. Chem. B 110(25), 12249–12256 (2006)

    Article  CAS  Google Scholar 

  33. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  CAS  Google Scholar 

  34. F. Shi, H.L. Dong, Lattice dynamics and phonon characteristics of complex perovskite microwave ceramics. IET Nanodielectrics 2(1), 11–26 (2019)

    Article  Google Scholar 

  35. E.C. Xiao, Z. Cao, J. Li et al., Crystal structure, dielectric properties, and lattice vibrational characteristics of LiNiPO4 ceramics sintered at different temperatures. J. Am. Ceram. Soc. 103(4), 2518–2529 (2020)

    Google Scholar 

  36. R. Peierls, Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant 11874240), Shandong Provincial Key Research and Development Program, China (No. 2019GGX101060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Shi or Jing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lv, J., Shi, F. et al. Intrinsic dielectric properties and lattice vibrational characteristics of single phase BaTiO3 ceramic. J Mater Sci: Mater Electron 32, 24041–24049 (2021). https://doi.org/10.1007/s10854-021-06866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06866-7

Navigation