Skip to main content
Log in

La0.8Pb0.1Ca0.1Fe1−xCoxO3 thin films as ozone-sensitive layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper describes the realization and characterization of \({\text{La}}_{0.8}{\text{Pb}}_{0.1}{\text{Ca}}_{0.1}{\text{Fe}}_{1-x}{\text{Co}}_{x}{\text{O}}_{3}\) gas-based sensors. \({\text{La}}_{0.8}{\text{Pb}}_{0.1}{\text{Ca}}_{0.1}{\text{Fe}}_{1-x}{\text{Co}}_{x}{\text{O}}_{3}\) \((0.00\le x\le 0.20)\) thin films are prepared using the drop-coating method over a \({\text{Si}}/{\text{SiO}}_{2}\) substrate with inter-digitated \({\text{Pt}}\)-electrodes. The sensors, thus, produced exhibit a good sensitivity to ozone at low concentration. The substitution of iron atoms by cobalt ones increases the sensor responses “S,” from 1.716 for \(x = 0.00\) to 6.584 to \(x = 0.20\) for an ozone concentration equal to \(400\,{\text{ppb}}\). In addition, the substitution of iron by cobalt induces a decrease in the sensor-operating temperature from \(270\,^\circ{\text{C}}\) for the parent compound \((x = 0.00)\) to \(170\,^\circ{\text{C}}\) for \(x = 0.20\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Yoon, M.L. Grilli, E.D. Bartolomeo, R. Polini, E. Traversa, The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes. J. Sens. Actuators B. Chem 76, 483 (2001)

    Article  CAS  Google Scholar 

  2. G.H. Zhang, Q. Chen, X.Y. Deng, H.Y. Jiao, P.Y. Wang, D.J. Gengzang, Synthesis and characterization of In-doped LaFeO3 hollow nanofibers with enhanced formaldehyde sensing properties. J. Mater. Lett 236, 229–232 (2019)

    Article  CAS  Google Scholar 

  3. B. Wang, Q. Yu, S. Zhang, T. Wang, P. Sun, X. Chuai, G. Lu, Gas sensing with yolk-shell LaFeO3 microspheres prepared by facile hydrothermal synthesis. J. Sens. Actuators B. Chem. 258, 1215–1222 (2018)

    Article  CAS  Google Scholar 

  4. E. Cao, A. Wu, H. Wang, Y. Zhang, W. Hao, L. Sun, Enhanced ethanol sensing performance of Au and Cl comodified LaFeO3 nanoparticles. ACS Appl. Nano Mater. 2, 1541–1551 (2019)

    Article  CAS  Google Scholar 

  5. Y. Chen, H. Qin, X. Wang, L. Li, J. Hu, Acetone sensing properties and mechanism of nano-LaFeO3 thick-films. J. Sens. Actuat. B. Chem 235, 56–66 (2016)

    Article  CAS  Google Scholar 

  6. V.R. Mastelaro, S.C. Zilio, L.F.D. Silva, P.I. Pelissari, M.I.B. Bernardi, J. Guerin, K. Aguir, Ozone gas sensor based on nanocrystalline SrTi1xFexO3 thin films. J. Sens. Actuators B Chem 181, 919 (2013)

    Article  CAS  Google Scholar 

  7. K. Fan, H. Qin, L. Wang, L. Ju, J. Hu, CO2 gas sensors based on La1xSrxFeO3 nanocrystalline powders. J. Sens. Actuators B. Chem 177, 265–269 (2013)

    Article  CAS  Google Scholar 

  8. Z.C. Xu, M.F. Liu, C.C. Chen, X.N. Ying, Charge disproportionation in La1-xCaxFeO3−δ investigated by mechanical spectroscopy. J. Appl. Phys. 115, 123516 (2014)

    Article  CAS  Google Scholar 

  9. L.S.R. Rocha, C.R. Foschini, C.C. Silva, E. Longo, A.Z. Simões, Novel ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route. J. Ceram. Int 42, 4539–4545 (2016)

    Article  CAS  Google Scholar 

  10. M. Mori, Y. Itagaki, Y. Sadaoka, Effect of VOC on ozone detection using semiconducting sensor with SmFe1−xCoxO3 perovskite-type oxides. J. Sens. Actuators B. Chem 44, 163 (2012)

    Google Scholar 

  11. R. Köferstein, L. Jäger, S. Ebbinghaus, Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics. J. Solid State Ion. 249, 1–5 (2013)

    Article  CAS  Google Scholar 

  12. N. Rezlescu, E. Rezlescu, P.D. Popa, C. Doroftei, M. Ignat, Characterization and catalytic properties of some perovskites. J. Compos. 60, 515–522 (2014)

    CAS  Google Scholar 

  13. A.A. Alharbi, A. Sackmann, U. Weimar, N. Barsan, Acetylene- and ethylene-sensing mechanism for LaFeO3-based gas sensors: operando insights. J. Phys. Chem C 124, 7317–73263 (2020)

    Article  CAS  Google Scholar 

  14. A. Benali, M. Bejar, E. Dhahri, M. Sajieddine, M.P.F. Graça, M.A. Valente, Magnetic, Raman and Mossbauer properties of double-doping LaFeO3 perovskite oxides. J. Mater. Chem. Phys 149, 467–472 (2015)

    Article  CAS  Google Scholar 

  15. P. Song, H. Qin, L. Zhang, K. An, Z. Lin, J. Hu, M. Jiang, The structure, electrical and ethanol-sensing properties of La1−xPbxFeO3 perovskite ceramics with x ≤ 0.3. J. Sens. Actuators B. Chem 104, 312–316 (2005)

    Article  CAS  Google Scholar 

  16. L. Kong, Y. Shen, Gas-sensing property and mechanism of CaxLa1−xFeO3 ceramics. J. Sens. Actuators B. Chem 30, 217–221 (1996)

    Article  CAS  Google Scholar 

  17. P. Song, J. Hu, H. Qin, L. Zhang, K. An, Preparation and ethanol sensitivity of nanocrystalline La0.7Pb0.3FeO3-based gas sensor. J. Mater. Lett 58, 2610 (2004)

    Article  CAS  Google Scholar 

  18. S. Smiy, H. Saoudi, A. Benali, M. Bejar, E. Dhahri, T. Fiorido, M. Bendahan, K. Aguir, Correlation between structural, magnetic and gas sensor properties of compounds. J. Mater. Res. Bull 130, 110922 (2020)

    Article  CAS  Google Scholar 

  19. H. Saoudi, A. Benali, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, R. Hayn, Structural and NH3 gas-sensing properties of perovskite compounds. J. Alloys. Compds 731, 655 (2018)

    Article  CAS  Google Scholar 

  20. H.Y. Li, C.S. Lee, D.H. Kim, J.H. Lee, Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. J. ACS Appl. Mater. Interfaces 10, 27858–27867 (2018)

    Article  CAS  Google Scholar 

  21. F.L. Pennec, A.E. Halabi, S. Bernadini, C.P. Pellegrino, K. Aguir, M. Bendahan, CO2 detection by barium titanate deposited by drop coating and screen-printing methods. Int. J. Adv. Syst. Measur. 13, 333–341 (2020)

    Google Scholar 

  22. S. Smiy, H. Saoudi, A. Benali, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, New perovskite compound for gas sensing application. J. Chem. Phys. Lett 735, 136765 (2019)

    Article  CAS  Google Scholar 

  23. A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. J. Ceram. Int 40, 14367 (2014)

    Article  CAS  Google Scholar 

  24. T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, R. Spinicci, V. Vignoli, Gas sensing properties and modeling of YCoO3 based perovskite materials. J. Sens. Actuators B. Chem 221, 1137 (2015)

    Article  CAS  Google Scholar 

  25. S. Smiy, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, V.M. Laithier, M. Bendahan, Film-thichness influence on ozone detection of La0.8Ca0.1Pb0.1Fe1−xCoxO3 (0.00≤x≤0.20) based sensors. N. J. Chem. (2021). https://doi.org/10.1039/D1NJ01368H

    Article  Google Scholar 

  26. X. Liu, B. Cheng, J. Hu, H. Qin, M. Jiang, Semiconducting gas sensor for ethanol based on LaMgxFe1−xO3 nanocrystals. J. Sens. Actuators B. Chem 129, 53–58 (2008)

    Article  CAS  Google Scholar 

  27. U. Pulkkinen, T.T. Rantala, T.S. Rantala, V. Lantto, Kinetic Monte Carlo simulation of oxygen exchange of SnO2 surface. J. Mol. Catal A. Chem 166, 15 (2001)

    Article  CAS  Google Scholar 

  28. S. Xu, Y. Yang, C. Jiang, J. Gao, L. Jing, P. Shen, L. Li, K. Shi, Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers. J. Alloys. Compds 618, 240 (2015)

    Article  CAS  Google Scholar 

  29. S. Smiy, M. Bejar, E. Dhahri, T. Fiorido, M. Bendahan, K. Aguir, Ozone detection based on nanostructured La0.8Pb0.1Ca0.1Fe0.8Co0.2O3 thin films. J. Alloys. Compds 829, 154596 (2020)

    Article  CAS  Google Scholar 

  30. J. Guerin, M. Bendahan, K. Aguir, A dynamic response model for the WO3-based ozone sensors. J. Sens. Actuators B. Chem 128, 462–467 (2008)

    Article  CAS  Google Scholar 

  31. V.R. Mastelaro, S.C. Zilio, L.F.D. Silva, P.I. Pelissari, M.I.B. Bernardi, J. Guerin, K. Aguir, Ozone gas sensor based on nanocrystalline SrTi1−xFexO3 thin films. J. Sens. Actuators B. Chem 181, 919–924 (2013)

    Article  CAS  Google Scholar 

  32. H. Okamoto et al., Pb (lead) binary alloy phase diagrams. Bull. Alloy Phase Diagrams 10, 370 (1989)

    Google Scholar 

  33. A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, W. Göpel, In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3. J. Sens. Actuators B. Chem 47, 92 (1998)

    Article  CAS  Google Scholar 

  34. W. Qu, W. Wlodarski, Immunoassay systems based on immunoliposomes consisting of genetically engineered single-chain antibody. J. Sens. Actuators B. Chem 64, 42–45 (2000)

    Article  CAS  Google Scholar 

  35. T. Sathiwitayakul, E. Newton, I.P. Parkin, M. Kuznetsov, R. Binions, Ferrite materials produced from self-propagating high-temperature synthesis for gas sensing applications. J. IEEE Sens 15, 196–200 (2015)

    Article  CAS  Google Scholar 

  36. A. Gaddari, F. Berger, M. Amjoud, J.B. Sanchez, M. Lahcini, B. Rhouta, D. Mezzane, C. Mavon, E. Beche, V. Flaud, A novel way for the synthesis of tin dioxide sol–gel derived thin films: application to O3 detection at ambient temperature. J. Sens. Actuators B Chem. 176, 811 (2013)

    Article  CAS  Google Scholar 

  37. A. Bejaoui, J. Guerin, J.A. Zapien, K. Aguir, Theoretical and experimental study of the response of CuO gas sensor under ozone. Sens. Actuators B 190, 8 (2014)

    Article  CAS  Google Scholar 

  38. L. Shoa, Z. Wu, H. Duan, T. Shaymurat, Discriminative and rapid detection of ozone realized by sensor array of Zn2+ doping tailored MoS2 ultrathin nanosheets. J. Sens. Actuators B Chem. 258, 937 (2018)

    Article  CAS  Google Scholar 

  39. R. Waser, Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices (Wiley, Weinheim, 2005)

    Google Scholar 

  40. M. Mori, J. Fujita, Y. Itagaki, Y. Sadaoka, Ozone detection in air using SmFeO3 gas sensor for air quality classification. J. Ceram. Soc. Jpn 119, 926 (2011)

    Article  CAS  Google Scholar 

  41. P.C. Chou, H.I. Chen, I.P. Liu, C.C. Chen, J.K. Liou, K.S. Hsu, W.C. Liu, On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor. J. IEEE. Sens 15, 3711–3715 (2015)

    Article  Google Scholar 

  42. H.I. Chen, C.Y. Hsiao, W.C. Chen, C.H. Chang, T.C. Chou, I.P. Liu, K.W. Lin, W.C. Liu, Characteristics of a Pt/NiO thin film-based ammonia gas sensor. J. Sens. Actuators B. Chem 256, 962 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bejar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smiy, S., Bejar, M., Dhahri, E. et al. La0.8Pb0.1Ca0.1Fe1−xCoxO3 thin films as ozone-sensitive layers. J Mater Sci: Mater Electron 32, 23983–23998 (2021). https://doi.org/10.1007/s10854-021-06862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06862-x

Navigation