Skip to main content
Log in

Detection of Fe3O4/PEG nanoparticles using one and two spin-valve GMR sensing elements in wheatstone bridge circuit

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Simple Wheatstone bridge-giant magnetoresistance (GMR) sensors with one and two spin-valve (SV) thin films were developed for detecting magnetic nanoparticles (MNPs). SV thin films with a Ta(2 nm)/Ir20Mn80(10 nm)/Co90Fe10(3 nm)/Cu(2.2 nm)/(Co90Fe10)92B8(10 nm)/Ta(5 nm) structure were fabricated using RF magnetron sputtering on Si/SiO2 substrates. Inverse spinel-structured Fe3O4 and Fe3O4/polyethylene glycol (PEG) MNPs were synthesized by coprecipitation methods. To investigate the GMR sensor response, MNPs-ethanol (10 μL) solutions were dropped on the surface of the thin films. The following changes in Fe3O4 were observed after coating with PEG: the size of the nanoparticles increased from 11 to 13 nm, and the saturation magnetization of Fe3O4 decreased from 77.0 to 49.6 emu/g, which can be attributed to the surface modifications by PEG polymer; furthermore, the coercivity increased from 51.2 to 61.5 Oe owing to the existence of the antiferromagnetic phase α-Fe2O3. The output voltage of the GMR sensor with one and two SV thin film elements for Fe3O4 changed by 2.2 and 5.5 mV, respectively, and the output voltage decreased to 1.4 and 1.5 mV, respectively, in the case of Fe3O4/PEG. The decrease in the output voltage was caused by the decrease in the saturation magnetization of Fe3O4 after coating with PEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Nabaei, R. Chandrawati, H. Heidari, Magnetic biosensors: modelling and simulation. Biosens. Bioelectron. 103, 69 (2018). https://doi.org/10.1016/j.bios.2017.12.023

    Article  CAS  Google Scholar 

  2. Y.T. Chen, A.G. Kolhatkar, O. Zenasni, S. Xu, T.R. Lee, Biosensing using magnetic particle detection techniques. Sensors 17, 1 (2017). https://doi.org/10.3390/s17102300

    Article  CAS  Google Scholar 

  3. I. Ennen, D. Kappe, T. Rempel, C. Glenske, A. Hütten, Giant magnetoresistance: basic concepts, microstructure magnetic interactions and applications. Sensors 16, 1 (2016). https://doi.org/10.3390/s16060904

    Article  CAS  Google Scholar 

  4. E.W. Hill, A comparison of GMR multilayer and spin-valve sensors for vector field sensing. IEEE Trans. Magn. 36, 2785 (2000). https://doi.org/10.1109/20.908589

    Article  Google Scholar 

  5. W. Wang, Y. Wang, L. Tu, Y. Feng, T. Klein, J.-P. Wang, Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Sci. Rep. 4, 1 (2014). https://doi.org/10.1038/srep05716

    Article  CAS  Google Scholar 

  6. J. Xu, Q. Li, W. Zong, Y. Zhang, S. Li, Ultra-wide detectable concentration range of GMR biosensors using Fe3O4 microspheres. J. Magn. Magn. Mater. 417, 25 (2016). https://doi.org/10.1016/j.jmmm.2016.05.059

    Article  CAS  Google Scholar 

  7. X. Sun, C. Lei, L. Guo, Y. Zhou, Separable detecting of Escherichia coli O157H:H7 by a giant magneto-resistance-based bio-sensing system. Sens. Actuators B 234, 485 (2016). https://doi.org/10.1016/j.snb.2016.04.183

    Article  CAS  Google Scholar 

  8. C. Zhu, L. Zhang, X. Shi, H. Qian, A fully integrated 4-channel GMR biochip for biomedical detection applications. Analog Integr. Circ. Sig. Process 95, 513 (2018). https://doi.org/10.1007/s10470-018-1154-0

    Article  Google Scholar 

  9. C. Marquina, J.M. de Teresa, D. Serrate, J. Marzo, F.A. Cardoso, D. Saurel, S. Cardoso, P.P. Freitas, M.R. Ibarra, GMR sensors and magnetic nanoparticles for immuno-chromatographic assays. J. Magn. Magn. Mater. 324, 3495 (2012). https://doi.org/10.1016/j.jmmm.2012.02.074

    Article  CAS  Google Scholar 

  10. Y.C. Liang, L. Chang, W. Qiu, A.G. Kolhatkar, B. Vu, K. Kourentzi, T.R. Lee, Y. Zu, R. Wilson, D. Litvinov, Ultrasensitive magnetic nanoparticle detector for biosensor applications. Sensors 17, 1 (2017). https://doi.org/10.3390/s17061296

    Article  CAS  Google Scholar 

  11. M. Guan, X. Mu, H. Zhang, Y. Zhang, J. Xu, Q. Li, X. Wang, D. Cao, S. Li, Spindle-like Fe3O4 nanoparticles for improving sensitivity and repeatability of giant magnetoresistance biosensors. J. Appl. Phys. 126, 064505 (2019). https://doi.org/10.1063/1.5096345

    Article  CAS  Google Scholar 

  12. J. Devkota, G. Kokkinis, T. Berris, M. Jamalieh, S. Cardoso, F. Cardoso, H. Srikanth, M.H. Phan, I. Giouroudi, A novel approach for detection and quantification of magnetic nanomarkers using a spin valve GMR-integrated microfluidic sensor. RSC Adv. 5, 51169 (2015). https://doi.org/10.1039/c5ra09365a

    Article  CAS  Google Scholar 

  13. C. Zhu, L. Zhang, J. Geng, X. Shi, H. Qian, A micro-array bio detection system based on a GMR sensor with 50-ppm sensitivity. Sci. China Inf. Sci. 60, 082403 (2017). https://doi.org/10.1007/s11432-016-0645-2

    Article  Google Scholar 

  14. L. Li, K.Y. Mak, C.W. Leung, S.M. Ng, Z.Q. Lei, P.W.T. Pong, Detection of 10-nm superparamagnetic iron oxide nanoparticles using exchange-biased GMR sensors in wheatstone bridge. IEEE Trans. Magn. 49, 4056 (2013). https://doi.org/10.1109/TMAG.2013.2237889

    Article  CAS  Google Scholar 

  15. V.A.J. Silva, P.L. Andrade, M.P.C. Silva, D.A. Bustamante, L.D.S. Santos Valladares, A.J. Aguiar, Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J. Magn. Magn. Mater. 343, 138 (2013). https://doi.org/10.1016/j.jmmm.2013.04.062

    Article  CAS  Google Scholar 

  16. S. Guo, D. Li, L. Zhang, J. Li, E. Wang, Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30, 1881 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.042

    Article  CAS  Google Scholar 

  17. M. Kim, Y. Choa, D.H. Kim, K.H. Kim, Magnetic behaviors of surface modified superparamagnetic magnetite nanoparticles. IEEE Trans. Magn. 45, 2446 (2009). https://doi.org/10.1109/tmag.2009.2018606

    Article  CAS  Google Scholar 

  18. J. Yang, P. Zou, L. Yang, J. Cao, Y. Sun, D. Han, S. Yang, Z. Wang, G. Chen, B. Wang, X. Kong, A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 303, 425 (2014). https://doi.org/10.1016/j.apsusc.2014.03.018

    Article  CAS  Google Scholar 

  19. D. Dorniani, A.U. Kura, M.Z.B. Hussein, S. Fakurazi, A.H. Shaari, Z. Ahmad, Controlled-release formulation of perindopril erbumine loaded PEG-coated magnetite nanoparticles for biomedical applications. J. Mater. Sci. 49, 8487 (2014). https://doi.org/10.1007/s10853-014-8559-7

    Article  CAS  Google Scholar 

  20. M.F. Tai, C.W. Lai, S.B.A. Hamid, Facile synthesis polyethylene glycol coated magnetite nanoparticles for high colloidal stability. J. Nanomater. 2016, 8612505 (2016). https://doi.org/10.1155/2016/8612505

    Article  CAS  Google Scholar 

  21. S. Yan, Z. Cao, Z. Guo, Z. Zheng, A. Cao, Y. Qi, Q. Leng, W. Zhao, Design and fabrication of full wheatstone-bridge-based angular GMR sensors. Sensors (Basel) 18, 1832 (2018). https://doi.org/10.3390/s18061832

    Article  CAS  Google Scholar 

  22. I. Nurpriyanti, I Pardede, E. Suharyadi, T. Kato, S. Iwata, Detection of Fe3O4 Magnetic Nanoparticles using Giant Magnetoresistance (GMR) Sensor Based on Multilayer and Spin Valve Thin Films by Wheatstone Bridge Circuit. 2016 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), 32 (2016). https://ieeexplore.ieee.org/document/7803717.

  23. G. Antarnusa, P.E. Swastika, E. Suharyadi, Wheatstone bridge-giant magnetoresistance (GMR) sensors based on Co/Cu multilayers for bio-detection applications. J. Phys: Conf. Ser. 1011, 012061 (2018). https://doi.org/10.1088/1742-6596/1011/1/012061

    Article  CAS  Google Scholar 

  24. P.E. Swastika, G. Antarnusa, E. Suharyadi, T. Kato, S. Iwata, Biomolecule detection using wheatstone bridge giant magnetoresistance (GMR) sensors based on CoFeB spin-valve thin film. J. Phys: Conf. Ser. 1011, 012060 (2018). https://doi.org/10.1088/1742-6596/1011/1/012060

    Article  CAS  Google Scholar 

  25. N.A. Wibowo, J. Juharni, T. Alfansuri, L.S. Handriani, H. Sabarman, E. Suharyadi, Core-shell Fe3O4@Ag magnetic nanoparticles detection using spin-valve GMR sensing element in the wheatstone bridge circuit. Mater. Res. Express 7, 126102 (2020). https://doi.org/10.1088/2053-1591/abce87

    Article  CAS  Google Scholar 

  26. M. Djamal, R. Ramli, Giant magnetoresistance sensors based on ferrite material and its applications. Magnetic sensors - Development trends and applications. IntechOpen 11–32 (2017)

  27. G. Antarnusa, E. Suharyadi, A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor. Mater. Res. Express 7, 056103 (2020). https://doi.org/10.1088/2053-1591/ab8bef

    Article  CAS  Google Scholar 

  28. G.A. Wang, S. Nakashima, S. Arai, T. Kato, S. Iwata, High sensitivity giant magnetoresistance magnetic sensor using oscillatory domain wall displacement. J. Appl. Phys. 107, 1 (2010). https://doi.org/10.1063/1.3360585

    Article  CAS  Google Scholar 

  29. T. Alfansuri, Sensitivity study of giant magnetoresistance (GMR) sensor with one dan two spin valve thin films. Thesis, Department of Physics, Universitas Gadjah Mada, Indonesia (2020)

  30. H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid. Interface Sci. 314, 274 (2007). https://doi.org/10.1016/j.jcis.2007.05.047

    Article  CAS  Google Scholar 

  31. Y. Yang, W. Kong, X. Cai, Solvent-free preparation and performance of novel xylitol based solid-solid phase change materials for thermal energy storage. Energy Build. 158, 37 (2018). https://doi.org/10.1016/j.enbuild.2017.09.096

    Article  Google Scholar 

  32. K. Shameli, M. Ahmad, S.D. Jazayeri, S. Sedaghat, P. Shabanzadeh, H. Jahangirian, M. Mahdavi, Y. Abdollahi, Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int. J. Mol. Sci. 13, 6639 (2012). https://doi.org/10.3390/ijms13066639

    Article  CAS  Google Scholar 

  33. V.P. Lemos, M.L. da Costa, R.L. Lemos, M.S.G. de Faria, Vivianite and siderite in lateritic iron crust: an example of bioreduction. Quim Nova 30, 36 (2007). https://doi.org/10.1590/S0100-40422007000100008

    Article  CAS  Google Scholar 

  34. A. Mukhopadhyay, N. Joshi, K. Chattopadhyay, G. De, A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome C. ACS Appl. Mater. Interfaces 4, 142 (2012). https://doi.org/10.1021/am201166m

    Article  CAS  Google Scholar 

  35. L.S. Birks, H. Friedman, Particle size determination from x-ray line broadening. J. Appl. Phys. 17, 687 (1946). https://doi.org/10.1063/1.1707771

    Article  CAS  Google Scholar 

  36. P.C. Panta, C.P. Bergmann, Obtention by coprecipitation and magnetic characterization of Fe3O4 nanoparticles coated with surfactants. Nano Res. Appl. 1, 1 (2015)

    Google Scholar 

  37. S. Upadhyay, K. Parekh, B. Pandey, Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J. Alloys Compd. 678, 478 (2016). https://doi.org/10.1016/j.jallcom.2016.03.279

    Article  CAS  Google Scholar 

  38. W.H. Qi, M.P. Wang, Size and shape dependent lattice parameters of metallic nanoparticles. J. Nanopart. Res. 7, 51 (2005). https://doi.org/10.1007/s11051-004-7771-9

    Article  CAS  Google Scholar 

  39. F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mørup, Magnetic properties of hematite nanoparticles. Phys. Rev. B 61, 6826 (2000). https://doi.org/10.1103/PhysRevB.61.6826

    Article  Google Scholar 

  40. C. Jiang, P.H. Chan, C.W. Leung, P.W.T. Pong, CoFe2O4 nanoparticle-integrated spin-valve thin films prepared by interfacial self-assembly. J. Phys. Chem. C 121, 22508 (2017). https://doi.org/10.1021/acs.jpcc.7b07242

    Article  CAS  Google Scholar 

  41. J. Xu, J. Jiao, Q. Li, S. Li, Ultralow detection limit of giant magnetoresistance biosensor using Fe3O4 graphene composite nanoparticle label. Chin. Phys. B 26, 1 (2017). https://doi.org/10.1088/1674-1056/26/1/010701

    Article  CAS  Google Scholar 

  42. J. Xu, Q. Li, X.Y. Gao, F.F. Leng, M. Lü, P.Z. Guo, G.X. Zhao, S.D. Li, Detection of the concentration of MnFe2O4 magnetic microparticles using giant magnetoresistance sensors. IEEE Trans. Magn. 52, 1 (2016). https://doi.org/10.1109/TMAG.2015.2497249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. Satoshi Iwata (Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan) and Prof. Dr. Takeshi Kato (Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan) for their advices and facility access in their laboratory for using vibrating sample magnetometer (VSM, Riken Denshi Co., Ltd.), RF Magnetron Sputtering, and magnetoresistance (MR) measurement tool; Dr. Daiki Oshima (Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan) for providing the spin-valve thin film.

Funding

This work was supported by the grant of PTUPT 2020-2022 Number 1767/UN1/DITLIT/DIT-LIT/PT/2021, Ministry of Education, Culture, Research & Technology, Republic of Indonesia and Nanofabrication Platform Consortium Project of Nagoya University, Minister of Culture, Sports, Science & Technology (MEXT) Nano-Project Platform, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edi Suharyadi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suharyadi, E., Alfansuri, T., Handriani, L.S. et al. Detection of Fe3O4/PEG nanoparticles using one and two spin-valve GMR sensing elements in wheatstone bridge circuit. J Mater Sci: Mater Electron 32, 23958–23967 (2021). https://doi.org/10.1007/s10854-021-06859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06859-6

Navigation