Skip to main content
Log in

Preparation of sputtered Fe3O4 thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe3O4, as a half-metallic ferrimagnetic material, is believed to be one of the most promising materials in spin transport for spintronics. However, fabricating stoichiometric Fe3O4 film is still challenging because the oxidation is hard to control for various preparing methods. In this paper, series of Fe3O4 thin films on Si (100) substrates are grown by sputtering from a Fe3O4 target without oxygen atmosphere at different growth temperature and then extra heat treatment in high vacuum. By combining X-ray diffractometer (XRD), Raman spectrum, X-ray photoelectron spectroscopy and X-ray magnetic circular dichroism, VSM analysis, we see that the structure and magnetic moment of Fe3O4 film are not only related with growth temperature during sputtering, but also refer to the temperature of post-heat treatments. When the growth temperature is lower than 300 °C, the film does not show any XRD diffraction peaks. When the growth temperature increases from 300 to 500 °C, the film shows the (111) texture of Fe3O4 film clearly. However, the other XRD diffraction peaks are observed after post-heat treatment. The saturation magnetization increases with growth temperature and the largest saturation magnetization is 473 emu/cm3 for growth temperature of 450 °C and extra heat treatment, which is close to bulk Fe3O4. Our results suggest that a selectable method can be used to fabricate high magnetic moment of Fe3O4 thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990)

    Article  CAS  Google Scholar 

  2. V.N. Antonov, B.N. Harmon, Electronic structure and x-ray magnetic circular dichroism in Fe3O4 and Mn-, Co-, or Ni-substituted Fe3O4. Phys. Rev. B. 67, 024417 (2003)

    Article  Google Scholar 

  3. R. Ramos, T. Kikkawa, K. Uchida, H. Adachi, I. Lucas, M.H. Aguirre, P. Algarabel, L. Morellón, S. Maekawa, E. Saitoh, M.R. Ibarra, Observation of the spin seebeck effect in epitaxial Fe3O4 thin films. Appl. Phys. Lett. 102(7), 072413 (2013)

    Article  Google Scholar 

  4. B. Dieny, Giant magnetoresistance in spin-valve multilayers. J. Magn. Magn. Mater. 136(3), 335–359 (1994)

    Article  CAS  Google Scholar 

  5. A. Fernández-Pacheco, J.M. De Teresa, J. Orna, L. Morellon, P.A. Algarabel, J.A. Pardo, M.R. Ibarra, Universal scaling of the anomalous Hall effect in Fe3O4 epitaxial thin films. Phys. Rev. B. 77, 100403(R) (2008)

    Article  Google Scholar 

  6. J. Wu, S. Xu, Y. Zhu, Helicobacter pylori CagA: a critical destroyer of the gastric epithelial barrier. Dig. Dis. Sci. 58(7), 1830–1837 (2013)

    Article  CAS  Google Scholar 

  7. D. Tripathy, A.O. Adeyeye, Effect of spacer layer thickness on the magnetic and magnetotransport properties of Fe3O4/Cu/Ni80Fe20 spin valve structures. Phys. Rev. B. 75, 012403 (2007)

    Article  Google Scholar 

  8. Z. Szotek, W.M. Temmerman, A. Svane, L. Petit, G.M. Stocks, H. Winter, Ab initio study of charge order in Fe3O4. Phys. Rev. B. 68, 055415 (2003)

    Google Scholar 

  9. T. Nagahama, Y. Matsuda, K. Tate, T. Kawai, N. Takahashi, S. Hiratani, Y. Watanabe, T. Yanase, T. Shimada, Magnetic properties of epitaxial Fe3O4 films with various crystal orientations and tunnel magnetoresistance effect at room temperature. Appl. Phys. Lett. 105(10), 102410 (2014)

    Article  Google Scholar 

  10. Z. Huang, Q. Chen, Y. Zhai, J. Wang, Y. Xu, B. Wang, Oxygen vacancy induced magnetization switching in Fe3O4 epitaxial ultrathin films on GaAs (100). Appl. Phys. Lett. 106(18), 182401 (2015)

    Article  Google Scholar 

  11. Z. Huang, Y. Zhai, X. Lu, G.D. Li, P.K.J. Wong, Y.B. Xu, H.R. Zhai, The interface effect of the magnetic anisotropy in ultrathin epitaxial Fe3O4 film. Appl. Phys. Lett. 92(11), 113105 (2008)

    Article  Google Scholar 

  12. J. Zhang, W. Liu, M. Zhang, X. Zhang, W. Niu, M. Gao, X. Wang, J. Du, R. Zhang, Y. Xu, Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films. J. Magn. Magn. Mater. 432, 472–476 (2017)

    Article  CAS  Google Scholar 

  13. E. Liu, Z. Huang, J.G. Zheng, J. Yue, L. Chen, X. Wu, Y. Sui, Y. Zhai, S. Tang, J. Du, H. Zhai, Texture Induced Magnetic Anisotropy in Fe3O4 Films. Appl. Phys. Lett. 107(17), 172403 (2015)

    Article  Google Scholar 

  14. S.A. Chambers, Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39, 105–180 (2000)

    Article  CAS  Google Scholar 

  15. D. Kumar, K. Pandya, S. Chaudhary, Electric field assisted sputtering of Fe3O4 thin films and reduction in anti-phase boundaries. J. Appl. Phys. 112, 073909 (2019)

    Article  Google Scholar 

  16. C. Park, Y. Peng, J.-G. Zhu, D.E. Laughlin, R.M. White, Magnetoresistance of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature. J. Appl. Phys. 97, 10C303 (2005)

    Article  Google Scholar 

  17. H. Liu, E.Y. Jiang, H.L. Bai, R.K. Zheng, H.L. Wei, X.X. Zhang, Large room-temperature spin-dependent tunneling magnetoresistance in polycrystalline Fe3O4 films. Appl. Phys. Lett. 83, 3531 (2003)

    Article  CAS  Google Scholar 

  18. Z.L. Lu, M.X. Xu, W.Q. Zou, S. Wang, X.C. Liu, Y.B. Lin, J.P. Xu, Z.H. Lu, J.F. Wang, L.Y. Lv, F.M. Zhang, Y.W. Du, Large low field magnetoresistance in ultrathin nanocrystalline magnetite Fe3O4 films at room temperature. Appl. Phys. Lett. 91, 102508 (2007)

    Article  Google Scholar 

  19. C. Boothman, A.M. Sánchez, S. van Dijken, Structural, magnetic, and transport properties of Fe3O4/Si(111) and Fe3O4/Si(001). J. Appl. Phys. 101, 123903 (2007)

    Article  Google Scholar 

  20. P.V. Muhammed Shameem, L. Mekala, D. Singh, M.S. Kumar, Structural and magnetic properties of polycrystalline Fe3O4 thin film. AIP Conf. Proc. 1728, 020333 (2016)

    Article  Google Scholar 

  21. I. Chamritski, G. Burns, Infrared and raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J. Phys. Chem. B 109(11), 4965–4968 (2005)

    Article  CAS  Google Scholar 

  22. E. Liu, Y. Yin, L. Sun, Y. Zhai, J. Du, F. Xu, H. Zhai, Increasing spin polarization in Fe3O4 films by engineering antiphase boundary densities. Appl. Phys. Lett. 110, 142402 (2017)

    Article  Google Scholar 

  23. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449 (2008)

    Article  CAS  Google Scholar 

  24. X.F. Meng, Y.L. Xu, X.F. Sun, J. Wang, L.L. Xiong, X.F. Du, S.C. Mao, Graphene oxide sheets-induced growth of nanostructured Fe3O4 for high-performance anode material of lithium ion batteries. J. Mater. Chem. A 3, 12938 (2015)

    Article  CAS  Google Scholar 

  25. Y. Ding, B.Q. Miao, Y. Zhao, F.M. Li, Y.C. Jiang, S.N. Li, Y. Chen, Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction. Chin. J. Catal. 42(2), 271–278 (2021)

    Article  CAS  Google Scholar 

  26. W. Zhang, P.K.J. Wong, D. Zhang, J. Yue, Z. Kou, G. van der Laan, A. Scholl, J.-G. Zheng, Z. Lu, Y. Zhai, XMCD and XMCD-PEEM studies on magnetic-field-assisted self-Assembled 1D nanochains of spherical ferrite particles. Adv. Funct. Mater. 27(29), 1701265 (2017)

    Article  Google Scholar 

  27. W. Zhang, P.K.J. Wong, X. Zhou, A. Rath, Z. Huang, H. Wang, S.A. Morton, J. Yuan, L. Zhang, R. Chua, S. Zeng, E. Liu, F. Xu, A. Ariando, D.H.C. Chua, Y.P. Feng, G. van der Laan, S.J. Pennycook, Y. Zhai, A.T.S. Wee, Ferromagnet/two-dimensional semiconducting transition-metal dichalcogenide interface with perpendicular magnetic anisotropy. ACS Nano 13, 2253–2261 (2019)

    CAS  Google Scholar 

  28. H. Yuan, E. Liu, Y. Yin, W. Zhang, P.K.J. Wong, J.G. Zheng, Z. Huang, H. Ou, Y. Zhai, Q. Xu, J. Du, H. Zhai, Enhancement of magnetic moment in ZnxFe3−xO4 thin films with dilute Zn substitution. Appl. Phys. Lett. 108(23), 232403 (2016)

    Article  Google Scholar 

  29. F.C. Voogt, T. Fujii, P.J.M. Smulders, L. Niesen, M.A. James, T. Hibma, NO2-assisted molecular-beam epitaxy of Fe3O4, Fe3-δO4, and γ-Fe2O3 thin films on MgO(100). Phys. Rev. B. 60, 15 (1999)

    Article  Google Scholar 

  30. G.Q. Gong, A. Gupta, G. Xiao, W. Qian, V.P. Dravid, Magnetoresistance and magnetic properties of epitaxial magnetite thin films. Phys. Rev. B. 56, 5096 (1997)

    Article  CAS  Google Scholar 

  31. F.E.N. Ramirez, J.A. Souza, The non-adiabatic polaron model revisited. Braz. J. Phys. 44, 308 (2014)

    Article  CAS  Google Scholar 

  32. X.H. Liu, W. Liu, Z.D. Zhang, Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films. Phys. Rev. B. 96, 094405 (2017)

    Article  Google Scholar 

  33. M. Ziese, H.J. Blythe, Magnetoresistance of magnetite. J. Phys. Condens. Matter 12, 13 (2000)

    Article  CAS  Google Scholar 

  34. R. Ramos, S.K. Arora, I.V. Shvets, Anomalous anisotropic magnetoresistance in epitaxial Fe3O4 thin films on MgO(001). Phys. Rev. B. 78, 214402 (2008)

    Article  Google Scholar 

  35. P. Li, L.T. Zhang, W.B. Mi, E.Y. Jiang, H.L. Bai, Origin of the butterfly-shaped magnetoresistance in reactive sputtered epitaxial Fe3O4 films. J. App. Phys. 106, 033908 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by National Natural Science Foundation of China (Nos. 52071079, 51971109, 51771053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaocong Huang or Ya Zhai.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Guo, Q., Liang, J. et al. Preparation of sputtered Fe3O4 thin film. J Mater Sci: Mater Electron 32, 23645–23653 (2021). https://doi.org/10.1007/s10854-021-06858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06858-7

Navigation