Skip to main content

Efficient charge carrier control on single walled carbon nanotube thin film transistors using water soluble polymer coatings


SWCNT-based thin-film transistors (TFTs) typically display unipolar p-type electrical characteristics in ambient condition due to the O2/H2O redox couple. However, complementary circuits that combine both p and n channels are preferred due to lower power requirements. Typical approaches with small molecule or polymeric dopants often yield ambipolar devices, or unstable n-type devices while concomitantly suppressing the on-current and mobility. Herein, we demonstrate a charge carrier control strategy using aqueous-based polymeric coatings that enable n-type devices with comparable performance to p-type devices. Specifically, we used a polyvinyl alcohol (PVA) coating layer containing a minority fraction of polyethyleneimine (PEI) (0.06–1.1 % w/w) to effectively switch the transfer characteristics from p-type to n-type, while maintaining decent electrical characteristics. Moreover, we demonstrate the ability to fine-tune the n branch threshold voltage via the annealing temperature. A similar strategy provides a balanced p branch on-current by incorporating PVA as a minor component (0.1-6 % w/w) into a polyacrylic acid (PAA) matrix. Through effective n-type conversion and p-type balancing, we demonstrate a simple SWCNT-based inverter. Considering the low-cost, environmentally friendly compositions and aqueous processability, this approach is attractive for large scale complementary printable circuits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Not applicable.

Code availability

Not applicable.


  1. 1.

    P. Avouris, Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35(12), 1026–1034 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Q. Cao, J.A. Rogers, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A Review of Fundamental and Applied Aspects. Adv. Mater. 21(1), 29–53 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    L. Hu, D.S. Hecht, G. Grüner, Carbon nanotube thin films: fabrication, properties, and applications. Chem. Rev. 110, 10, 5790–5844 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    C. Wang, K. Takei, T. Takahashi, A. Javey, Carbon nanotube electronics – moving forward. Chem. Soc. Rev. 42, 2592–2609 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339, 6119, 535–539 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Q. Zhang, J.-Q. Huang, W.-Z. Qian, Y.-Y. Zhang, F. Wei, The Road for nano-materials industry: a review of carbon nanotube production, post-treatment, and bulk ap-plications for composites and energy storage. Small 9, 1237–1265 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    L.-M. Peng, Z. Zhang, S. Wang, Carbon nanotube electronics: recent advances. Mater. Today 17, 9, 433–442 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    H. Zhang, B. Wu, W. Hu, Y. Liu, Separation and/or selective enrichment of sin-gle-walled carbon nanotubes based on their electronic properties. Chem. Soc. Rev. 40, 1324–1336 (2011).

    Article  Google Scholar 

  9. 9.

    F. Lu, M.J. Meziani, L. Cao, Y.-P. Sun, Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond. langmuir 27, 8, 4339–4350 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    T. Fujigaya, N. Nakashima, Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci. Technol. Adv. Mater. 16, 024802 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    H. Wang, Z. Bao, Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 10, 6, 737–758 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    J. Lefebvre, J. Ding, Z. Li, P. Finnie, G. Lopinski, P.R.L. Malenfant, High-Purity semiconducting single-walled carbon nanotubes: akey enabling material in emerging elec-tronics. Acc. Chem. Res. 50, 10, 2479–2486 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    G.S. Tulevski, A.D. Franklin, D. Frank, J.M. Lobez, Q. Cao, H. Park, A. Afzali, S.-J. Han, J.B. Hannon, W. Haensch, Toward High-performance digital logic technology with carbon nanotubes. ACS Nano 8, 9, 8730–8745 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    M.M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. Wong, P. Mitra, S, Carbon nanotube computer. Nature 501, 526–530 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    G. Hills, C. Lau, A. Wright, S. Fuller, M.D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, A. Arvind, Chandrakasan, M.M. Shulaker, Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    C. Rutherglen, A.A. Kane, P.F. Marsh, T.A. Cain, B.I. Hassan, M.R. AlShareef, C. Zhou, K. Galatsis, Wafer-scalable, aligned carbon nanotube transistors operating at fre-quencies of over 100 GHz. Nat. Electron. 2, 530–539 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    D.-M. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors. Small 9, 8, 1188–1205 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    S. Qiu, K. Wu, B. Gao, L. Li, H. Jin, Q. Li, Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 31, 9, 1800750 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M.R. Amer, C. Zhou, Review of electronics based on single-walled carbon nanotubes. Top. Curr. Chem (Z) 375, 75 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics Semicond. Sci. Technol. 30, 074001 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Y. Jung, C. Yeom, H. Park, D. Jung, H. Koo, J. Noh, D. Wang, G. Cho, Signifi-cant effect of the molecular formula in silver nanoparticle ink to the characteristics of fully gra-vure-printed carbon nanotube thin-film transistors on flexible polymer substrate. Org. Electron. 28, 197–204 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    J. Sun, A. Sapkota, H. Park, P. Wesley, Y. Jung, B.B. Maskey, Y. Kim, Y. Majima, J. Ding, J. Ouyang, C. Guo, J. Lefebvre, Z. Li, P.R.L. Malenfant, A. Javey, G. Cho, Fully R2R-printed carbon-nanotube-based limitless length of flexible active-matrix for electrophoretic display application. Adv. Electron. Mater. 1901431 (2020).

  23. 23.

    C.M. Aguirre, P.L. Levesque, M. Paillet, F. Lapointe, B.C. St-Antoine, P. Desjardins, R. Martel, The role of the oxygen/water redox couple in suppressing electron con-duction in field-effect transistors. Adv. Mater. 21, 30, 3087–3091 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    K.K. Kim, S.M. Kim, Y.H. Lee, Chemically conjugated carbon nanotubes and graphene for carrier modulation. Acc. Chem. Res. 49, 3, 390–399 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, H. Dai, Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano lett 3(2), 193–198 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    M. Brohmann, M. Rother, S.P. Schieβl, E. Preis, S. Allard, U. Scherf, J. Zaumseil, Temperature-dependent charge transport in polymer-sorted semiconducting carbon nano-tube networks with different diameter distributions. J. Phys. Chem. C 122(34), 19886–19896 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    S.-H. Lee, Y. Xu, D. Khim, W.-T. Park, D.-Y. Kim, Y.-Y. Noh, Effect of polymer gate dielectrics on charge transport in carbon nanotube network transistors: low–k insu-lator for favorable active interface. ACS Appl. Mater. Interfaces 8, 47, 32421–32431 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    S.M. Kim, J.H. Jang, K.K. Kim, H.K. Park, J.J. Bae, W.J. Yu, I.H. Lee, G. Kim, D.D. Loc, U.J. Kim, E.-H. Lee, H.-J. Shin, J.-Y. Choi, Y.H. Lee, Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J. Am. Chem. Soc. 131(1), 327–331 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    H. Wang, P. Wei, Y. Li, J. Han, H.R. Lee, B.D. Naab, N. Liu, C. Wang, E. Adijanto, B.C.-K. Tee, S. Morishitab, Q. Li, Y. Gao, Y. Cui, Z. Bao, Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible com-plementary circuits. PNAS 111, 13, 4776–4781 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    S. Schneider, M. Brohmann, R. Lorenz, Y.J. Hofstetter, M. Rother, E. Sauter, M. Zharnikov, Y. Vaynzof, H.-J. Himmel, J. Zaumseil, Efficient n–doping and hole blocking in single-walled carbon nanotube transistors with 1,2,4,5–Tetrakis(tetramethylguanidino)benzene. ACS Nano 12, 5895–5902 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    M.L. Geier, K. Moudgil, S. Barlow, S.R. Marder, M.C. Hersam, Controlled n-type doping of carbon nanotube transistors by an organorhodium dimer. Nano Lett. 16, 7, 4329–4334 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Q. Xu, J. Zhao, V. Pecunia, W. Xu, C. Zhou, J. Dou, W. Gu, J. Lin, L. Mo, Y. Zhao, Z. Cui, Selective conversion from p–type to n–type of printed bottom-gate carbon nanotube thin-ilm transistors and application in complementary met-al – oxide – semiconductor inverters. ACS Appl. Mater. Interfaces 9, 12750–12758 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    J.-L. Xu, R.-X. Dai, Y. Xin, Y.-L. Sun, X. Li, Y.-X. Yu, L. Xiang, D. Xie, S.-D. Wang, T.-L. Ren, Efficient and reversible electron doping of semiconductor-enriched single-walled carbon nanotubes by using decamethylcobaltocene. Sci, Rep. 7, 6751 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    M. Shim, A. Javey, N.W.S. Kam, H. Dai, Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 123, 11512–11513 (2001).

    CAS  Article  Google Scholar 

  35. 35.

    Y. Zhou, A. Gaur, S.-H. Hur, C. Kocabas, M.A. Meitl, M. Shim, J.A. Rogers, p-Channel, n-channel thin film transistors and p – n diodes ased on single wall carbon nanotube networks. Nano Lett. 4, 10 (2004). 2031–2035.

    CAS  Article  Google Scholar 

  36. 36.

    T. Yasunishi, S. Kishimoto, E.I. Kauppinen, Y. Ohno, Fabrication of high-mobility n -type carbon nanotube thin-film transistors on plastic film. Phys. Status Solidi C 10(11), 1612–1615 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    T. Yasunishi, S. Kishimoto, Y. Ohno, Effect of ambient air on n-type carbon nanotube thin-film transistors chemically doped with poly(ethylene imine). Jpn. J. Appl. Phys. 53, 05FD01 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    C. Lu, Q. Fu, S. Huang, J. Liu, Polymer electrolyte-gated carbon nanotube field-effect transistor. Nano Lett. 4, 4, 623–627 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    G.P. Siddons, D. Merchin, J.H. Back, J.K. Jeong, M. Shim, Highly efficient gat-ing and doping of carbon nanotubes with polymer electrolytes. Nano Lett. 4(5), 927–931 (2004).

    CAS  Article  Google Scholar 

  40. 40.

    S. Aikawa, E. Einarsson, T. Thurakitseree, S. Chiashi, E. Nishikawa, S. Maruyama, Deformable transparent all-carbon-nanotube transistors. Appl. Phys. Lett. 100, 063502 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    S. Aikawa, S. Kim, T. Thurakitseree, E. Einarsson, T. Inoue, S. Chiashi, K. Tsukagoshi, S. Maruyama, Carrier polarity engineering in carbon nanotube field-effect transistors by induced charges in polymer insulator. Appl. Phys. Lett. 112, 013501 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    F. Lapointe, A. Sapkota, J. Ding, J. Lefebvre, Polymer encapsulants for threshold voltage control in carbon nanotube transistors. ACS Appl. Mater. Interfaces 11, 39, 36027–36034 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    J. Zhang, C. Wang, Y. Fu, Y. Che, C. Zhou, Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 5(4), 3284–3292 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    G. Li, Q. Li, Y. Jin, Y. Zhao, X. Xiao, K. Jiang, J. Wang, S. Fan, Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer die-lectrics. Nanoscale 7, 17693–17701 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    T.-J. Ha, K. Chen, S. Chuang, K.M. Yu, D. Kiriya, A. Javey, Highly uniform and stable n-type carbon nanotube rtansistors by using positively charged silicon nitride thin films. Nano Lett. 15(1), 392–397 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Y. Zhao, Q. Li, X. Xiao, G. Li, Y. Jin, K. Jiang, J. Wang, S. Fan (2016) Three-dimensional flexible complementary metal–oxide–semiconductor logic circuits based on two-layer stacks of single-walled carbon nanotube networks. ACS Nano 10, 2, 2193–2202.

    CAS  Article  Google Scholar 

  47. 47.

    J. Tang, Q. Cao, G. Tulevski, K.A. Jenkins, L. Nela, D.B. Farmer, S.-J. Han, Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electro. 1, 191–196 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Z. Li, K.R. Jinkins, D. Cui, M. Chen, Z. Zhao, M.S. Arnold, C. Zhou, Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and their application in complementary metal-oxide-semiconductor electronics. Nano Res. (2021).

    Article  Google Scholar 

  49. 49.

    J. Ding, Z. Li, J. Lefebvre, F. Cheng, G. Dubey, S. Zou, P. Finnie, A. Hrdina, L. Scoles, G.P. Lopinski, C.T. Kinsgton, B. Simard, P.R.L. Malenfant, Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 6, 2328–2339 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    J. Ding, Z. Li, J. Lefebvre, F. Cheng, J.L. Dunford, P.R.L. Malenfant, J. Humes, J. Kroeger, A hybrid enrichment process combining conjugated polymer extraction and silica gel adsorption for high purity semiconducting single-walled carbon nanotubes (SWCNT). Nanoscale 7, 15741–15747 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    Z. Li, J. Ding, J. Lefebvre, P.R.L. Malenfant, Surface effects on network formation of conjugated polymer wrapped semiconducting single walled carbon nanotubes and thin film transistor performance. Org. Electron. 26, 15–19 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Z. Li, J. Ding, P. Finnie, J. Lefebvre, F. Cheng, C.T. Kingston, P.R.L. Malenfant, Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Res. 8, 2179–2187 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris, Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    CAS  Article  Google Scholar 

  54. 54.

    X. Cui, M. Freitag, R. Martel, L. Brus, P. Avouris, Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett. 3(6), 783–787 (2003).

    CAS  Article  Google Scholar 

  55. 55.

    Z. Li, J. Ding, C. Guo, J. Lefebvre, P.R.L. Malenfant decomposable s-tetrazine copolymer enables single-walled carbon nanotube thin film transistors and sensors with improved sensitivity. Adv. Funct. Mater. 1705568 (2018).

  56. 56.

    Z. Li, J. Ding, J. Lefebvre, P.R.L. Malenfant, Dopant-modulated conjugated polymer enrichment of semiconducting SWCNTs. ACS Omega 3, 3, 3413–3419 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    M. Lim, H. Kwon, D. Kim, J. Seo, H. Han, S.B. Khan, Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly(vinyl alcohol) hybrid films for packaging applications. Prog. Org. Coat. 85, 68–75 (2015).

    CAS  Article  Google Scholar 

  58. 58.

    Y.-H. Yang, L. Bolling, M. Haile, J.C. Grunlan, Improving oxygen barrier and reducing moisture sensitivity of weak polyelectrolyte multilayer thin films with crosslinking. RCS Adv. 2, 12355–12363 (2012).

    CAS  Article  Google Scholar 

  59. 59.

    V.G. Kadajji, G.V. Betageri, Water soluble polymers for pharmaceutical applications. Polymers 3(4), 1972–2009 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    J. Lefebvre, J. Ding, Z. Li, F. Cheng, N. Du, P.R.L. Malenfant, Hysteresis free carbon nanotube thin film transistors comprising hydrophobic dielectrics. Appl. Phys. Lett. 107, 243301 (2015).

    CAS  Article  Google Scholar 

Download references


This study was funded by National Research Council Canada.

Author information




The manuscript was written through contributions by all authors. All authors have given approval to the final version of the manuscript. All authors contributed to the study conception and design. [Jianfu Ding] purified sc-SWCNTs. [Zhao Li] fabricated the devices and performed TFT measurement. [Francois Lapointe] performed the charge density measurement. The first draft of the manuscript was written by [Zhao Li] and all authors revised it.

Corresponding authors

Correspondence to Zhao Li or Patrick R. L. Malenfant.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors agree publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ding, J., Lapointe, F. et al. Efficient charge carrier control on single walled carbon nanotube thin film transistors using water soluble polymer coatings. J Mater Sci: Mater Electron 32, 23923–23934 (2021).

Download citation