Skip to main content
Log in

Structural, optical and electrical properties of Mn-doped ZnFe2O4 synthesized using sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The system Zn1-xMnxFe2O4 (x = 0, 2, and 4%) was prepared by sol–gel chemical route at 80 °C. X-Ray powder diffraction and Raman spectrum analysis were used to determine the preliminary phase of obtained samples. W–H and SSP plots were used to determine the crystallite size and micro-strain of samples. The surface charge and morphology of the samples were studied using zeta potential and scanning electron microscope analysis, respectively. The optical bandgap of the samples suggested that they were semiconducting. The dielectric characteristics of samples were examined as a function of temperature (60–600 °C) at various frequencies (1 kHz, 10 kHz, 100 kHz, and 1 MHz). The presence of interfacial and orientational polarization was indicated by dielectric constant and dissipation factor studies, which ranged from (0.7–460) to (0.3–0.8) with Mn and were found thermally stable up to 300 °C. The thermal dependence of DC conductivity demonstrates Arrhenius type transport with one, two, and three regions of conduction in sample ZF-0, ZF-2, and ZF-4 respectively. The sources of charge carriers in samples were \({V}_{o}^{\cdot \cdot }\), \(e^{\prime}\) and dipole defects \(\left( {V_{o}^{{ \cdot \cdot }} - 2{Fe_{{Fe^{{3 + }} }}^{{2 + }}} ^{\prime } } \right)\)/\(\left( {{2Mn^{{3 + }} _{Zn^{{2 + }} }}^.- 2{Fe_{{Fe^{{3 + }} }}^{{2 + }}} ^{\prime } } \right)\). The current work could help to identify the possible applications in semiconductor devices, thermally stable capacitors, and as mixed ionic electronic conductors in solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.A. El Hiti, DC conductivity for NixMg1-xFe2O4 ferrites. Phase Trans. 54, 117–122 (1995). https://doi.org/10.1080/01411599508213222

    Article  Google Scholar 

  2. M.A. Almessiere, Y. Slimani, H. Güngüneş et al., Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram. Int. 46, 11124–11131 (2020). https://doi.org/10.1016/j.ceramint.2020.01.132

    Article  CAS  Google Scholar 

  3. K.L. Routray, D. Sanyal, D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. J. Appl. Phys. 122, 224104 (2017)

    Article  Google Scholar 

  4. Y. Jia, B.W. Lee, C. Liu, Magnetic ZnFe2O4 nanocubes: synthesis and photocatalytic activity with visible light/H2 O2. IEEE Trans Magn 53, 1–5 (2016)

    Article  Google Scholar 

  5. L. Passerini, Ricerche sugli spinelli. II. I composti: CuAl2O4; MgAl2O4; MgFe2O4; ZnAl2O4; ZnCr2O4; ZnFe2O4; MnFe2O4. Gazz Chim. Ital. 60, 389–399 (1930)

    CAS  Google Scholar 

  6. H. Cheema, S. Kumar, P.A. Alvi et al., Synthesis and physical properties of nanopowder and electrical properties of bulk samples of ZnFe2-xNixO4 (x: 0, 0.05, 0.10). Adv. Powder. Technol. 31, 4241–4252 (2020). https://doi.org/10.1016/j.apt.2020.09.001

    Article  CAS  Google Scholar 

  7. R. Srivastava, B.C. Yadav, Nanostructured ZnFe2O4 thick film as room temperature liquefied petroleum gas sensor. J. Exp. Nanosci. 10, 703–717 (2015). https://doi.org/10.1080/17458080.2013.880001

    Article  CAS  Google Scholar 

  8. X. Zhou, J. Liu, C. Wang et al., Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres. Sensors Actuators B Chem 206, 577–583 (2015). https://doi.org/10.1016/j.snb.2014.09.080

    Article  CAS  Google Scholar 

  9. B. Jiang, C. Han, B. Li et al., In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 10, 2728–2735 (2016)

    Article  CAS  Google Scholar 

  10. F. Li, W. Zhan, Y. Su et al., Achieving excellent electromagnetic wave absorption of ZnFe2O4@ CNT/polyvinylidene fluoride flexible composite membranes by adjusting processing conditions. Compos. Part A Appl. Sci. Manuf. 133, 105866 (2020)

    Article  CAS  Google Scholar 

  11. M.M. Vadiyar, S.K. Patil, S.C. Bhise et al., Improved electrochemical performance of a ZnFe2O4 nanoflake-based supercapacitor electrode by using thiocyanate-functionalized ionic liquid electrolytes. Eur. J. Inorg. Chem. 2015, 5832–5838 (2015). https://doi.org/10.1002/ejic.201500870

    Article  CAS  Google Scholar 

  12. R.H. Vignesh, K.V. Sankar, S. Amaresh et al., Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sensors Actuators B Chem. 220, 50–58 (2015)

    Article  CAS  Google Scholar 

  13. A. Manohar, C. Krishnamoorthi, Site selective Cu2+ substitution in single crystal Fe3O4 biocompatible nanospheres by solvothermal reflux method. J. Cryst. Growth 473, 66–74 (2017). https://doi.org/10.1016/j.jcrysgro.2017.05.013

    Article  CAS  Google Scholar 

  14. A. Ashok, T. Ratnaji, L.J. Kennedy, J.J. Vijaya, Magnetically separable Zn1-xCuxFe2O4 (0≤ x≤ 0.5) nanocatalysts for the transesterification of waste cooking oil. Adv. Powder. Technol. 31, 2573–2585 (2020)

    Article  CAS  Google Scholar 

  15. M.M.N. Ansari, S. Khan, Structural, electrical and optical properties of sol–gel synthesized cobalt substituted MnFe2O4 nanoparticles. Phys. B Condens. Matter. 520, 21–27 (2017)

    Article  CAS  Google Scholar 

  16. S. Zawar, S. Atiq, M. Tabasum et al., Highly stable dielectric frequency response of chemically synthesized Mn-substituted ZnFe2O4. J Saudi Chem. Soc. 23, 417–426 (2019)

    Article  CAS  Google Scholar 

  17. E. Hema, A. Manikandan, M. Gayathri et al., The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. J. Nanosci. Nanotechnol. 16, 5929–5943 (2016)

    Article  CAS  Google Scholar 

  18. Y. Zhao, H. An, G. Dong et al., Elevated removal of di-n-butyl phthalate by catalytic ozonation over magnetic Mn-doped ferrospinel ZnFe2O4 materials: Efficiency and mechanism. Appl. Surf. Sci. 505, 144476 (2020)

    Article  CAS  Google Scholar 

  19. R.D. Raland, J.P. Borah, Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia. J. Phys. D Appl. Phys. 50, 35001 (2016)

    Article  Google Scholar 

  20. X. Tang, X. Hou, L. Yao et al., Mn-doped ZnFe2O4 nanoparticles with enhanced performances as anode materials for lithium ion batteries. Mater. Res. Bull. 57, 127–134 (2014). https://doi.org/10.1016/j.materresbull.2014.05.038

    Article  CAS  Google Scholar 

  21. A. Hakimyfard, S. Mohammadi, ZnFe2O4 and ZnO-Zn1−xMxFe2O4+δ (M = Sm3+, Eu3+ and Ho3+): Synthesis, physical properties and high performance visible light induced photocatalytic degradation of malachite green. Adv. Powder. Technol. 30, 1257–1268 (2019). https://doi.org/10.1016/j.apt.2019.04.005

    Article  CAS  Google Scholar 

  22. R. Sagayaraj, S. Aravazhi, P. Praveen, G. Chandrasekaran, Structural, morphological and magnetic characters of PVP coated ZnFe2O4 nanoparticles. J. Mater. Sci. Mater. Electron. 29, 2151–2158 (2018)

    Article  CAS  Google Scholar 

  23. C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 104, 1141–1145 (2000)

    Article  CAS  Google Scholar 

  24. L. Wang, A. McCarthy, K.J. Takeuchi et al., A combined experimental and theoretical study of lithiation mechanism in ZnFe2O4 anode materials. MRS Adv. 3, 773–778 (2018)

    Article  CAS  Google Scholar 

  25. M. Dhiman, R. Sharma, V. Kumar, S. Singhal, Morphology controlled hydrothermal synthesis and photocatalytic properties of ZnFe2O4 nanostructures. Ceram. Int. 42, 12594–12605 (2016)

    Article  CAS  Google Scholar 

  26. M. Hofmann, S.J. Campbell, H. Ehrhardt, R. Feyerherm, The magnetic behaviour of nanostructured zinc ferrite. J. Mater. Sci. 39, 5057–5065 (2004)

    Article  CAS  Google Scholar 

  27. K. Tanaka, M. Makita, Y. Shimizugawa et al., Structure and high magnetization of rapidly quenched zinc ferrite. J. Phys. Chem. Solids 59, 1611–1618 (1998)

    Article  CAS  Google Scholar 

  28. S. Li, Q. Liu, R. Liu et al., Removal performance of methyl blue onto magnetic ZnFe2O4 nanoparticles prepared via the solution combustion process. J. Nanosci. Nanotechnol. 17, 4112–4118 (2017)

    Article  CAS  Google Scholar 

  29. P.A. Vinosha, L.A. Mely, J.E. Jeronsia et al., Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik (Stuttg) 134, 99–108 (2017)

    Article  CAS  Google Scholar 

  30. M. Lakshmi, K.V. Kumar, K. Thyagarajan, An investigation of structural and magnetic properties of Cr–Zn ferrite nanoparticles prepared by a sol–gel process. J. Nanostructure. Chem. 5, 365–373 (2015)

    Article  CAS  Google Scholar 

  31. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  32. U. Kumar, S. Upadhyay, Structural, optical and electrical properties of ruddlesden popper oxide Ba2SnO4. J. Electron. Mater. 48, 5279–5293 (2019). https://doi.org/10.1007/s11664-019-07336-x

    Article  CAS  Google Scholar 

  33. U. Kumar, M.J. Ansaree, A.K. Verma et al., Oxygen vacancy induced electrical conduction and room temperature ferromagnetism in system BaSn1-xNixO3 (0 × 0.20). Mater. Res. Express 4, 116304 (2017). https://doi.org/10.1088/2053-1591/aa9416

    Article  CAS  Google Scholar 

  34. C.V.V.M. Gopi, R. Vinodh, S. Sambasivam et al., Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors. Chem. Eng. J. 381, 122640 (2020)

    Article  CAS  Google Scholar 

  35. A. Kumar, B. Khan, G. Singh et al., Structural, microstructure, optical, and electrical properties of Ti-doped CaSnO3 prepared by sol–gel chemical route. Phys. Scr. 95, 105807 (2020). https://doi.org/10.1088/1402-4896/abb89f

    Article  CAS  Google Scholar 

  36. U. Kumar, S. Upadhyay, Structural, microstructure, optical, and dielectric properties of Sr1.99M0.01SnO4 (M: La, Nd, Eu) Ruddlesden-Popper oxide. J. Mater. Sci. Mater. Electron. 31, 5721–5730 (2020). https://doi.org/10.1007/s10854-020-03140-0

    Article  CAS  Google Scholar 

  37. A. Kumar, B. Khan, V. Yadav et al., Rietveld refinement, optical, dielectric and ac conductivity studies of Ba-doped SrSnO3. J. Mater. Sci. Mater. Electron. 31, 16838–16848 (2020). https://doi.org/10.1007/s10854-020-04240-7

    Article  CAS  Google Scholar 

  38. U. Kumar, D. Yadav, S. Upadhyay, Investigation of structural, optical, and magnetic properties of Nd-doped Sr2SnO4 Ruddlesden Popper oxide. J. Am. Ceram. Soc. 103, 5743–5757 (2020). https://doi.org/10.1111/jace.17303

    Article  CAS  Google Scholar 

  39. F. Boschini, A. Rulmont, R. Cloots, R. Moreno, Rheological behaviour of BaZrO3 suspensions in non-aqueous media. Ceram. Int. 35, 1007–1013 (2009). https://doi.org/10.1016/j.ceramint.2008.04.012

    Article  CAS  Google Scholar 

  40. Y. Xu, Y. Qin, S. Palchoudhury, Y. Bao, Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27, 8990–8997 (2011). https://doi.org/10.1021/la201652h

    Article  CAS  Google Scholar 

  41. H. Gavilán, A. Kowalski, D. Heinke et al., Colloidal flower-shaped iron oxide nanoparticles: synthesis strategies and coatings. Part Part Syst. Charact. 34, 1700094 (2017). https://doi.org/10.1002/ppsc.201700094

    Article  CAS  Google Scholar 

  42. Galinetto P, Albini B, Bini M, Mozzati MC, Raman spectroscopy in zinc ferrites nanoparticles. Raman Spectrosc. 223 (2018)

  43. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, C. Pavithra, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl. Phys. A Mater. Sci. Process 125, 477 (2019). https://doi.org/10.1007/s00339-019-2760-0

    Article  CAS  Google Scholar 

  44. U. Kumar, D. Yadav, A.K. Thakur et al., Investigation on phase formation of Sr2SnO4 and effect of La-doping on its structural and optical properties. J. Therm. Anal. Calorim. 135, 1987–1999 (2019). https://doi.org/10.1007/s10973-018-7432-3

    Article  CAS  Google Scholar 

  45. U. Kumar, J. Ansaree, S. Upadhyay, Structural and optical characterizations of BaSnO3 nanopowder synthesized by aqueous sol–gel sol–gel method. Process Appl. Ceram. 11, 177–184 (2017)

    Article  CAS  Google Scholar 

  46. M. Irshad, Q. ul Ain, K. Siraj et al., Evaluation of BaZr0.8X0.2O3 (X= Y, Gd, Sm) proton conducting electrolytes sintered at low temperature for IT-SOFC synthesized by cost effective combustion method. J. Alloys Compd. 815, 152389 (2020)

    Article  CAS  Google Scholar 

  47. Kumar U, Upadhyay S, Sr2SnO4 ruddlesden popper oxide: future material for renewable energy applications. (Wiley Online Library, 2020)

  48. A.J. Deotale, R.V. Nandedkar, Correlation between particle size, strain and band gap of iron oxide nanoparticles. Mater. Today Proc. 3, 2069–2076 (2016). https://doi.org/10.1016/j.matpr.2016.04.110

    Article  Google Scholar 

  49. S.S. Nair, M. Mathews, M.R. Anantharaman, Evidence for blueshift by weak exciton confinement and tuning of bandgap in superparamagnetic nanocomposites. Chem. Phys. Lett. 406, 398–403 (2005). https://doi.org/10.1016/j.cplett.2005.02.107

    Article  CAS  Google Scholar 

  50. U. Kumar, S. Upadhyay, Investigation of structural, optical and electrical properties of Sr2SnO4, Sr1.99Eu0.01SnO4 and Sr2Sn0.99Eu0.01O4 ruddlesden popper oxide. Mater Res Express 6, 055805 (2019). https://doi.org/10.1088/2053-1591/aaf2d8

    Article  CAS  Google Scholar 

  51. Callister WD, Materials science and engineering: an introduction (2nd edition). Mater Des 12, 59 (1991). https://doi.org/10.1016/0261-3069(91)90101-9

  52. H. Jaffe, Piezoelectric ceramics. J. Am. Ceram. Soc. 41, 494–498 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb12903.x

    Article  CAS  Google Scholar 

  53. Kao KC, Dielectric phenomena in solids (2004)

  54. U. Kumar, K. Ankur, D. Yadav, S. Upadhyay, Synthesis and characterization of ruddlesden-popper system (Ba1−xSrx)2SnO4. Mater. Charact. 162, 110198 (2020). https://doi.org/10.1016/j.matchar.2020.110198

    Article  CAS  Google Scholar 

  55. D. Yadav, U. Kumar, G. Nirala et al., Effect of acceptor Na1+ doping on the properties of perovskite SrCeO3. J. Mater. Sci. Mater. Electron. 30, 15772–15785 (2019). https://doi.org/10.1007/s10854-019-01963-0

    Article  CAS  Google Scholar 

  56. Yousuf MA, Hussain S, Kousar T, et al., The impact of pH on structural and electrical properties of er-substituted znfe2o4 nanoparticles synthesized via wet chemical route. J. Supercond. Nov. Magn. 1–9 (2021)

  57. Mohanty D, Mallick P, Biswal SK, et al., Investigation of structural, dielectric and electrical properties of ZnFe2O4 composite. Mater. Today Proc. (2020)

  58. N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4. J Appl Phys 101, 84116 (2007)

    Article  Google Scholar 

  59. S.S. Kumbhar, M.A. Mahadik, S.S. Shinde et al., Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. J. Photochem. Photobiol. B Biol. 142, 118–123 (2015)

    Article  CAS  Google Scholar 

  60. U. Kumar, S. Upadhyay, Studies on dielectric and electrical properties of Ruddlesden-Popper oxide Sr2SnO4. Mater. Lett. 227, 100–103 (2018). https://doi.org/10.1016/j.matlet.2018.05.046

    Article  CAS  Google Scholar 

  61. D. Yadav, U. Kumar, S. Upadhyay, Study of structural, electrical, and photoluminescent properties of SrCeO3 and Sr2CeO4. J. Adv. Ceram. 8, 377–388 (2019). https://doi.org/10.1007/s40145-019-0320-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are also thankful to DST, Govt. of India, New Delhi, for providing the support in terms of CURIE scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheema, H., Yadav, V., Maurya, R.S. et al. Structural, optical and electrical properties of Mn-doped ZnFe2O4 synthesized using sol–gel method. J Mater Sci: Mater Electron 32, 23578–23600 (2021). https://doi.org/10.1007/s10854-021-06847-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06847-w

Navigation