Skip to main content
Log in

Role of dysprosium in enhancing the humidity sensing performance in manganese zinc ferrites for sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present scenario, ferrites are widely used for humidity sensor applications. Aiming this, we have prepared Dy3+-doped Mn–Zn ferrites by solution combustion method combining urea and glucose as burning agent. And obtained powder was characterized by several physicochemical techniques. The phase purity was confirmed by using the techniques such as X-ray powder diffraction and infrared spectroscopy. FTIR spectra show 2 prominent absorption bands under 1000 cm−1 which confirms the formation of spinel ferrite. The dielectric studies with change in frequency exhibited remarkable changes with Dy3+ content in samples. All electrical responses were investigated as a function of frequency and Dy3+ content at room temperature. The dielectric constant and loss on the frequency of the alternating applied electric field is consistent with Maxwell–Wagner style interfacial polarization. Further Humidity sensing response were recorded for pellet samples. It is noteworthy that, as the composition of the Dysprosium (Dy3+) increases the resistance is enhanced and is maximum for the Mn0.5Zn0.5Dy0.03Fe2−0.03O4 composite. Hence our results are good enough for sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Waqas, A.H. Qureshi, K. Subhan, M. Shahzad, Nanograin Mn–Zn ferrite smart cores to miniaturize electronic devices. Ceram. Int. 38, 1235–1240 (2012)

    Article  CAS  Google Scholar 

  2. K. Praveena, K. Sadhana, S. Bharadwaj, S. Murthy, Development of nanocrystalline Mn–Zn ferrites for high frequency transformer applications. J. Magn. Magn. Mater. 321, 2433–2437 (2009)

    Article  CAS  Google Scholar 

  3. K. Pubby, S.B. Narang, Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites. Mater. Lett. 244, 186–191 (2019)

    Article  CAS  Google Scholar 

  4. K. Pubby, S.B. Narang, Ka band absorption properties of substituted nickel spinel ferrites: comparison of open-circuit approach and short-circuit approach. Ceram. Int. 45, 23673–23680 (2019)

    Article  CAS  Google Scholar 

  5. K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy, Development of nanocrystalline Mn–Zn ferrites for forward type DC–DC converter for switching mode power supplies. Mater. Res. Innov. 14, 56–61 (2010)

    Article  CAS  Google Scholar 

  6. K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy, Fabrication of dc–dc converter using nanocrystalline Mn–Zn ferrites. Mater. Res. Innov. 14, 102–106 (2010)

    Article  CAS  Google Scholar 

  7. R. Huang, D. Zhang, K.-J. Tseng, Determination of dimension-independent magnetic and dielectric properties for Mn–Zn ferrite cores and its EMI applications. IEEE Trans. Electromagn. Compat. 50, 597–602 (2008)

    Article  Google Scholar 

  8. Z. Beji, M. Sun, L. Smiri, F. Herbst, C. Mangeney, S. Ammar, Polyol synthesis of non-stoichiometric Mn–Zn ferrite nanocrystals: structural/microstructural characterization and catalytic application. RSC Adv. 5, 65010–65022 (2015)

    Article  CAS  Google Scholar 

  9. T. Xie, H. Li, C. Liu, J. Yang, T. Xiao, L. Xu, Magnetic photocatalyst BiVO4/Mn-Zn ferrite/reduced graphene oxide: synthesis strategy and its highly photocatalytic activity. Nanomaterials 8, 380 (2018)

    Article  CAS  Google Scholar 

  10. C.Q. Shen, H.N. Ji, J. Wu, N. Zhu, J.Q. Niu, H.D. Li, X.B. Niu, Synthesis and characterization of MnZn ferrite nanoparticles for biomedical applications, in: 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) (IEEE, 2018) pp. 1–2

  11. A. Anwar, S. Zulfiqar, M.A. Yousuf, S.A. Ragab, M.A. Khan, I. Shakir, M.F. Warsi, Impact of rare earth Dy+3 cations on the various parameters of nanocrystalline nickel spinel ferrite. J. Mater. Res. Technol. 9, 5313–5325 (2020)

    Article  CAS  Google Scholar 

  12. V.J. Angadi, K. Manjunatha, K. Praveena, V.K. Pattar, B.J. Fernandes, S.O. Manjunatha, J. Husain, S.V. Angadi, L.D. Horakeri, K.P. Ramesh, Magnetic properties of larger ionic radii samarium and gadalonium doped manganese zinc ferrite nanoparticles prepared by solution combustion method. J. Magn. Magn. Mater. 529, 167899 (2021)

    Article  CAS  Google Scholar 

  13. V.J. Angadi, K. Manjunatha, N.H. Ayachit, Correlation of internal strain and size with electrical and magnetic properties of Ce3+-doped manganese ferrimagnetic nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 9275–9293 (2021)

    CAS  Google Scholar 

  14. N. Rezlescu, E. Rezlescu, The influence of Fe substitutions by R ions in a Ni-Zn Ferrite. Solid State Commun. 88, 139 (1993)

    Article  CAS  Google Scholar 

  15. A. D’souzaa, M.D. Kumara, M. Chatima, V. Naika, P.P. Naika, R.B. Tangsali, Effect of rare-earth doping on magnetic and electrical transport properties of nanoparticle Mn–Zn ferrite. Adv. Sci. Lett. 22, 773–779 (2016)

    Article  Google Scholar 

  16. M.A. Almessiere, Y. Slimani, A.D. Korkmaz, S. Güner, A. Baykal, S.E. Shirsath, I. Ercan, P. Kögerler, Sonochemical synthesis of Dy3+ substituted Mn0.5Zn0.5Fe2−xO4 nanoparticles: structural, magnetic and optical characterizations. Ultrason. Sonochem. 61, 104836 (2020)

    Article  CAS  Google Scholar 

  17. K.V. Zipare, S.S. Bandgar, G.S. Shahane, Effect of Dy-substitution on structural and magnetic properties of Mnsingle bondZn ferrite nanoparticles. J. Rare Earths 36, 86–94 (2018)

    Article  CAS  Google Scholar 

  18. S.I. El-Dek, M.A. Ahmed, A.A. Eltawil, M.S. Afify, Laser induced adjustment of the conductivity of rare earth doped Mn-Zn nanoferrite. Mater. Sci.-Poland 35(3), 519–527 (2017)

    Article  CAS  Google Scholar 

  19. E. Ateia, M.A. Ahmed, A.K. El-Aziz, Effect of rare earth radius and concentration on the structural and transport properties of doped Mn–Zn ferrit. Magn. Magn. Mater. 311, 545–554 (2007)

    Article  CAS  Google Scholar 

  20. J. Shah, R.K. Kotnala, B. Singh, H. Kishan, Microstructure-dependent humidity sensitivity of porous MgFe2O4–CeO2 ceramic. Sens. Actuators B Chem. 128, 306–311 (2007)

    Article  CAS  Google Scholar 

  21. D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)

    Article  CAS  Google Scholar 

  22. L. Yin, W. Mi, Progress in BiFeO3-based heterostructures: materials, properties and applications. Nanoscale 12, 477 (2020)

    Article  CAS  Google Scholar 

  23. X. Hou, X. Wang, W. Mi, Progress in Fe3O4-based multiferroic heterostructures. J. Alloys Compd. 765, 1127–1138 (2018)

    Article  CAS  Google Scholar 

  24. M. Back, E. Trave, R. Marin, N. Mazzucco, D. Cristofori, P. Riello, Energy transfer in Bi- and Er-codoped Y2O3 nanocrystals: an effective system for rare earth fluorescence enhancement. J. Phys. Chem. A 118, 30071–30078 (2014)

    CAS  Google Scholar 

  25. M. Pal, P. Brahrma, D. Chakravorty, Magnetic and electrical properties of nickel-zinc ferrites doped with bismuth oxide. J. Magn. Magn. Mater. 152, 370–374 (1996)

    Article  CAS  Google Scholar 

  26. M. Pal, P. Brahrma, D. Chakravorty, AC conductivity in bismuth oxide doped nickel-zinc ferrites. J. Phys. Soc. Jpn. 67, 2847–2851 (1998)

    Article  CAS  Google Scholar 

  27. V.J. Angadi, K. Manjunatha, S.P. Kubrin, A.T. Kozakov, A.G. Kochur, A.V. Nikolskii, I.D. Petrov, S.I. Shevtsova, N.H. Ayachit, Crystal structure, valence state of ions and magnetic properties of HoFeO3 and HoFe0.8Sc0.2O3 nanoparticles from X-ray diffraction, X-ray photoelectron, and Mössbauer spectroscopy data. J. Alloys Compds. 842, 155805 (2020)

    Article  CAS  Google Scholar 

  28. I.C. Sathisha, K. Manjunatha, V.J. Angadi, R.K. Reddy, Structural, microstructural, electrical, and magnetic properties of CuFe2-(x+ y)EuxScyO4 (where x and y vary from 0 to 0.03) nanoparticles. J. Supercond. Nov. Magn. 33, 3963–3973 (2020)

    Article  CAS  Google Scholar 

  29. K. Manjunatha, V.J. Angadi, R. Rajaramakrishna, U.M. Pasha, Role of 5 mol% Mg-Ni on the structural and magnetic properties of cobalt chromates crystallites prepared by solution combustion technique. J. Supercond. Nov. Magn. 33, 2861–2866 (2020)

    Article  CAS  Google Scholar 

  30. F. Ding, J. Lin, T. Wu, H. Zhong, Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and nuclear radiation shielding properties of [α-Fe3+O(OH)]-doped lithium borate glasses. Appl. Phys. A 126, 221 (2020)

    Article  CAS  Google Scholar 

  31. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46(10), 15740–15763 (2020)

    Article  CAS  Google Scholar 

  32. K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, S. Matteppanavar, N.S. Reddy, V.J. Angadi, Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. J. Mater. Sci.: Mater. Electron. 30, 17202–17217 (2019)

    CAS  Google Scholar 

  33. H.R. Lakshmiprasanna, K. Manjunatha, V.J. Angadi, U.M. Pasha, J. Husain, Effect of cerium on structural, microstructural, magnetic and humidity sensing properties of Mn–Bi ferrites. Nano-Struct. Nano-Objects 24, 100608 (2020)

    Article  CAS  Google Scholar 

  34. A. Sunilkumar, S. Manjunatha, T. Machappa, B. Chethan, Y.T. Ravikiran, A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bull. Mater. Sci. 42, 271 (2019)

    Article  CAS  Google Scholar 

  35. S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, V.J. Angadi, Enhanced humidity sensing performance of Samarium doped Lanthanum Aluminate at room temperature. Sens. Actuators A Phys. 304, 111903 (2020)

    Article  CAS  Google Scholar 

  36. A.T. Ramaprasad, V. Rao, Chitin-polyaniline blend as humidity sensor. Sens. Actuators B Chem. 148, 117–125 (2010)

    Article  CAS  Google Scholar 

  37. I.C. Athisha, K. Manjunatha, A. Bajorek, B.R. Babu, B. Chethan, T.R. Reddy, Y.T. Ravikiran, V.J. Angadi, Enhanced humidity sensing and magnetic properties of bismuth doped copper ferrites for humidity sensor applications. J. Alloys Compd. 848, 156577 (2020)

    Article  CAS  Google Scholar 

  38. J. Shah, M. Arora, L.P. Purohit, R.K. Kotnala, Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sens. Actuators A Phys. 167, 332–337 (2011)

    Article  CAS  Google Scholar 

  39. K. Manjunatha, V.J. Angadi, M.C. Oliveira, S.R. de Lazaro, E. Longo, R.A.P. Ribeiro, S.O. Manjunatha, N.H. Ayachit, Towards shape-oriented Bi-doped CoCr2O4 nanoparticles from theoretical and experimental perspective: structural, morphological, optical, electrical and magnetic properties. J. Mater. Chem. C 9, 6452–6469 (2021)

    Article  CAS  Google Scholar 

  40. K. Manjunatha, V.J. Angadi, R.A.P. Ribeiro, M.C. Oliveira, S.R. de Lázaro, M.R.D. Bomio, S. Matteppanavar, S. Rayaprol, P.D. Babu, U.M. Pasha, Structural, electronic and magnetic properties of Sc3+ doped CoCr2O4 nanoparticles. New J. Chem. 44, 14246–14255 (2020)

    Article  CAS  Google Scholar 

  41. Y. Li, K. Fan, H. Ban, M. Yang, Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors. Sens. Actuators B Chem. 222, 151–158 (2016)

    Article  CAS  Google Scholar 

  42. K. Manjunatha, V.J. Angadi, K.M. Srinivasamurthy, S. Matteppanavar, V.K. Pattar, U.M. Pasha, Exploring the structural, dielectric and magnetic properties of 5 Mol% Bi3+-substituted CoCr2O4 nanoparticles. J. Supercond. Nov. Magn. 33, 1747–1757 (2020)

    Article  CAS  Google Scholar 

  43. A. Sunilkumar, S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, M. Masuelli, Polypyrrole-Tantalum disulfide composite: an efficient material for fabrication of room temperature operable humidity sensor. Sens. Actuators A Phys. 298, 111593 (2019)

    Article  CAS  Google Scholar 

  44. D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators B Chem. 255, 1869–1877 (2018)

    Article  CAS  Google Scholar 

  45. D. Ravinder, K.V. Kumar, Dielectric behaviour of erbium substituted Mn-Zn ferrites. Bull. Mater. Sci. 24, 505–509 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project Number (TURSP-2020/45), Taif University. Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. El-Denglawey or V. Jagadeesha Angadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Denglawey, A., Angadi, V.J., Manjunatha, K. et al. Role of dysprosium in enhancing the humidity sensing performance in manganese zinc ferrites for sensor applications. J Mater Sci: Mater Electron 32, 23554–23565 (2021). https://doi.org/10.1007/s10854-021-06842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06842-1

Navigation