Skip to main content
Log in

Structural and microwave properties of Ag-doped strontium hexaferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of silver-doped strontium hexaferrite with the chemical formula SrAgZFe12-zO19 (0.0 ≤ z ≤ 1.0) were synthesized by the Co-precipitation method. The crystal structure, morphology, and properties of microwave absorption with Ag concentration were studied. The structural analysis by XRD revealed that the samples are crystallized with an M-type hexagonal structure. The values of lattice parameters, the volume of the unit cell, and X-ray density are increasing with the increase of Ag doping. The least values of Rietveld refinements have confirmed a good correlation between experimental and calculated data. Hexagonal plate-like morphology was observed in SEM images and the grain size decreases with Ag doping. Microwave properties have been measured by a vector network analyzer. Real and imaginary parts of electrical permittivity dependence with the frequencies in X-band (8–12 GHz) have been studied. The Reflection loss (RL) was investigated for all samples in X-band frequencies. Maximum RL of − 21.95 dB at 10.0 GHz was observed for the composition of silver, z = 0.4. Improved RL when compared with the pure sample indicating enhanced impedance matching and attenuation constant hence the material can show maximum energy loss for the incident microwaves. The results so obtained are explained based on composition and microwave phenomena. The present studies have confirmed the nature of microwave absorption for Ag-doped strontium hexaferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Ghasemi, Enhanced reflection loss and permittivity of self-assembled Mg–Co–Zr substituted barium ferrite dot array on carbon nanotube. J. MagMagMater. 324, 1080–1083 (2012). https://doi.org/10.1016/j.jmmm.2011.10.027

    Article  CAS  Google Scholar 

  2. C. Singh, S.B. Narang, I.S. Hudiara, K. Sudheendran, K.C.J. Raju, Complex permittivity and complex permeability of Sr ions substituted Ba ferrite at X-band. J. MagMagMater 320, 1657–1665 (2008). https://doi.org/10.1016/j.jmmm.2007.11.002

    Article  CAS  Google Scholar 

  3. A. Balmori, Environmentalist 30, 90 (2010)

    Article  Google Scholar 

  4. K. Vinoy, R. Jha, Sadhana 20, 815 (1995)

    Article  Google Scholar 

  5. P.J. Bora, M. Porwal, K. Vinoy, P.C. Ramamurthy, G. Madras, Compos. B 134, 151 (2018)

    Article  CAS  Google Scholar 

  6. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)

    Article  CAS  Google Scholar 

  7. I. Araz, J. Mater. Sci.: Mater. Electron. 30, 14935 (2019)

    CAS  Google Scholar 

  8. R. Mohammadian, S. Rahmani, M.S.S. Dorraji, I. Hajimiri, J. Mater. Sci.: Mater. Electron. 29, 458329 (2018)

    Google Scholar 

  9. B. Shirk, W. Buessem, J. Appl. Phys. 40, 1294 (1969)

    Article  CAS  Google Scholar 

  10. A. Garg, S. Goel, N. Kumari et al., Development of SrFe12O19/Ti3SiC2 composites for enhanced microwave absorption. J. Elec. Mater. 49, 2233–2241 (2020). https://doi.org/10.1007/s11664-019-07922-z

    Article  CAS  Google Scholar 

  11. A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S.LYu. YakovenkoMatzui, Dalton Trans. 46, 9010 (2017)

    Article  CAS  Google Scholar 

  12. M. Jamalian, A. Ghasemi, M.J.P. Asl, J. Electron. Mater. 44, 2856 (2015)

    Article  CAS  Google Scholar 

  13. A. Garg, S. Goel, N. Kumari et al., Yttrium-doped strontium hexaferrite particles for microwave absorption application in X-band. J. Mater. Sci.: Mater. Electron 31, 13746–13755 (2020). https://doi.org/10.1007/s10854-020-03934-2

    Article  CAS  Google Scholar 

  14. M. Nyathani, G. Sriramulu, T.A. Babu, N.V. Prasad, D. Ravinder, S. Katlakunta, Crystal chemistry, magnetic and dielectric properties of nickel doped strontium ferrites. Biointerface Res. Appl. Chem. 12(1), 929–939 (2021). https://doi.org/10.33263/BRIAC121.929939

    Article  Google Scholar 

  15. J. Luo, Y. Xu, H. Mao, J. Magn. Magn. Mater. 381, 365 (2015)

    Article  CAS  Google Scholar 

  16. S. Chang, S. Kangning, C. Pengfei, J. Magn. Magn. Mater. 324, 802 (2012)

    Article  Google Scholar 

  17. F. Guo, G. Ji, J. Xu, H. Zou, S. Gan, X. Xu, J. Magn. Magn. Mater 324, 1209 (2012)

    Article  CAS  Google Scholar 

  18. Lutteroti, L. MAUD tutorial - Instrumental Broadening Determination, 2006. http://www.ing.unitn.it/~maud/Tutorial/sizestrain/InstrumentalBroadening.pdf

  19. C.A. Schneider, W.S. Rasband, W. EliceiriK, NIH image to ImageJ: 25 years of image analysis. Nature Methods 9(7), 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  20. Hewlett-Packard Microwave Network Analyser Catalogue 8510 and Product Note 8510–3. https://www.hpmemoryproject.org/an/pdf/pn8510-3.pdf

  21. J. Assal, B. Hallstedt, L.J. Gauckler, Thermodynamic assessment of the silver-oxygen system. J. Am. Ceram. Soc. 80, 3054 (1987). https://doi.org/10.1111/j.1151-2916.1997.tb03232.x

    Article  Google Scholar 

  22. G.B. Teh, YCh. Wong, R.D. Tilley, Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite. J. Magn. Magn. Mater. 323, 2318–2322 (2011). https://doi.org/10.1016/j.jmmm.2011.04.014

    Article  CAS  Google Scholar 

  23. M.N. Ashiq, M.J. Iqbal, I.H. Gul, Structural, magnetic and dielectric properties of Zr–Cd substituted strontium hexaferrite (SrFe12O19) nanoparticles. J Alloys Compds 487, 341–345 (2009). https://doi.org/10.1016/j.jallcom.2009.07.140

    Article  CAS  Google Scholar 

  24. M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 322, 1720–1726 (2010). https://doi.org/10.1016/j.jmmm.2009.12.013

    Article  CAS  Google Scholar 

  25. Y.L.N. Murthy, T. KondalaRao, I.V. Kasiviswanath, R. Singh, Synthesis and characterization of nano silver ferrite composite. J. MagMagMater 322, 2071–2074 (2010). https://doi.org/10.1016/j.jmmm.2010.01.036

    Article  CAS  Google Scholar 

  26. E.J. Verwey, E. Heilman, Physical properties and cation arrangement of oxides with spinel structures i cation arrangement in spinels. J. Chem. Phys. 15, 174 (1947). https://doi.org/10.1063/1.1746464

    Article  CAS  Google Scholar 

  27. A. Baykal, H. Güngüneş, H. Sözeri, M. Amir, I. Auwal, S. Asiri, S. Shirsath, A.D. Korkmaz, J. Ceram. Int. 43, 15486–15492 (2017). https://doi.org/10.1016/j.ceramint.2017.08.096

    Article  CAS  Google Scholar 

  28. M.V. Rane, D. Bahadur, C.M. Srivastava, Fourier transform-infrared studies of non-stoichiometric Ni-Zr substituted barium ferrite. J. Phys. D: Appl. Phys. 32, 2001–5 (1999). https://doi.org/10.1088/0022-3727/32/16/308

    Article  CAS  Google Scholar 

  29. P.M. Nikolic, Lj. Zivanov, O.S. Aleksic, D. Samaras, G.A. Gledhill, J.D. Collins, FIR optical properties of single crystal Ba-and Sr-hexaferrite. J. Infrared Phys. Techn. 30, 265–9 (1990). https://doi.org/10.1016/0020-0891(90)90008-J

    Article  Google Scholar 

  30. H.A. Elkady, M.M.A. Sekkina, K. Nagorny, New information on Mössbauer and phase transition properties of Z-type hexaferrites. Hyperfine Inter. 128, 23–432 (2000). https://doi.org/10.1023/A:1012612405813

    Article  Google Scholar 

  31. R.D. Waldron, Infrared Spectra of Ferrites. Phys. Rev 99, 1727 (1955). https://doi.org/10.1103/PhysRev.99.1727

    Article  CAS  Google Scholar 

  32. Y.J. Kim, S.S. Kim, Magnetic and microwave absorbing properties of Ti and Co substituted M-hexaferrites in Ka-band frequencies (26.5 40 GHz). J. Electroceram. 24, 314–318 (2010). https://doi.org/10.1007/s10832-009-9575-x

    Article  CAS  Google Scholar 

  33. K.A. Korolev, L. Subramanian, M.N. Afsar, Complex permittivity and permeability of strontium ferrites at millimeter waves. J. Appl. Phys. 99, 08F504–08F504-3 (2006). https://doi.org/10.1063/1.2172233

    Article  CAS  Google Scholar 

  34. N. Chen, K. Yang, M. Gu, Microwave absorption properties of La-substituted M-type strontium ferrites. J. Alloys Compd. 490, 609–612 (2010). https://doi.org/10.1016/j.jallcom.2009.10.116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. D. Karuna Sagar, Head, Department of Physics, University College of Science, Osmania University, Hyderabad for his constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ravinder.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maramu, N., Ravinder, D., Anil Babu, T. et al. Structural and microwave properties of Ag-doped strontium hexaferrite. J Mater Sci: Mater Electron 32, 23854–23862 (2021). https://doi.org/10.1007/s10854-021-06797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06797-3

Navigation