Skip to main content

Advertisement

Log in

g-C3N4 quantum dot decorated MoS2/Fe3O4 as a novel recoverable catalyst for photodegradation of organic pollutant under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, zero-dimensional (quantum dots) of graphitic carbon nitride (g-C3N4) and Fe3O4 nanoparticles were decorated on MoS2 nanosheets to prepare MoS2/Fe3O4/g-C3N4 quantum dots. Photocatalytic activities of newly synthesized nanocatalyst were investigated by the degradation of methylene blue (MB) and methyl orange (MO) under visible LED lamp light. In these degradation reactions, the parameters effective such as dyes concentration, pH, amount of catalyst, and irradiation time were also investigated. The systematic investigations revealed that 10 mg of MoS2/Fe3O4/g-C3N4QDs catalyst was optimum to degrade 10 mg/L of MB and 40 mg of nanocatalyst to degrade 10 mg/L of MO with 60 W of LED irradiation. Nanocomposite can act as an excellent photocatalyst for degradation of MB and MO at short time intervals and also can be easily separated by an external magnet and reused several times. The kinetic data acquired for the degradation of dyes were matched to first-order rate equations, and also the apparent rate constants for the degradation of MB and MO were calculated as follows: K = 0.285 min−1 and K = 0.263 min−1, respectively. The novelty of catalyst is due to metal (Mo) and non-metal (S) in the structure of substrate (MoS2), so Fe3O4 and g-C3N4 QDs can be strongly connected to the substrate. The structure and morphology of prepared nanocomposite were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) energy dispersive X-ray spectroscopy (EDS), and UV–Vis spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci.: Mater. Electron. 29(3), 1719 (2018). https://doi.org/10.1007/s10854-017-8166-x

    Article  CAS  Google Scholar 

  2. H. Ali, Hybrid treatment systems for dye wastewater. Crit. Rev. Environ. Sci. Technol. 37(4), 315 (2007). https://doi.org/10.1080/10643380601174723

    Article  CAS  Google Scholar 

  3. F.I. Hai, K. Yamamoto, K. Fukushi, Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J. Biotechnol. 89(3), 163 (2001). https://doi.org/10.1016/S0168-1656(01)00313-3

    Article  Google Scholar 

  4. H. Ali, Biodegradation of synthetic dyes—a review. Water Air Soil Pollut. 213(4), 251 (2010). https://doi.org/10.1007/s11270-010-0382-4

    Article  CAS  Google Scholar 

  5. P. Kharazi, R. Rahimi, M. Rabbani, Study on porphyrin/ZnFe2O4@polythiophene nanocomposite as a novel adsorbent and visible light driven photocatalyst for the removal of methylene blue and methyl orange. Mater. Res. Bull. 103, 133 (2018). https://doi.org/10.1016/j.materresbull.2018.03.031

    Article  CAS  Google Scholar 

  6. M. Amir, U. Kurtan, A. Baykal, Rapid color degradation of organic dyes by Fe3O4@His@Ag recyclable magnetic nanocatalyst. J. Ind. Eng. Chem. 27, 347 (2015). https://doi.org/10.1016/j.jiec.2015.01.013

    Article  CAS  Google Scholar 

  7. A. Srinivasan, T. Viraraghavan, Decolorization of dye wastewaters by biosorbents: a review. J. Environ. Manag. 91(10), 1915 (2010). https://doi.org/10.1016/j.jenvman.2010.05.003

    Article  CAS  Google Scholar 

  8. R. Jiraratananon, A. Sungpet, P. Luangsowan, Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt. Desalination 130(2), 177 (2000). https://doi.org/10.1016/S0011-9164(00)00085-0

    Article  CAS  Google Scholar 

  9. P. Janoš, P. Michálek, L. Turek, Sorption of ionic dyes onto untreated low-rank coal–oxihumolite: a kinetic study. Dyes Pigm. 74(2), 363 (2007). https://doi.org/10.1016/j.dyepig.2006.02.017

    Article  CAS  Google Scholar 

  10. W. Yu, X. Liu, L. Pan, J. Li, J. Liu, J. Zhang, Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Appl. Surf. Sci. 319, 107 (2014). https://doi.org/10.1016/j.apsusc.2014.07.038

    Article  CAS  Google Scholar 

  11. X. Wu, D. Zhang, F. Jiao, S. Wang, Visible-light-driven photodegradation of methyl orange using Cu2O/ZnAl calcined layered double hydroxides as photocatalysts. Colloids Surf. A 508, 110 (2016). https://doi.org/10.1016/j.colsurfa.2016.08.047

    Article  CAS  Google Scholar 

  12. S. Kumar, V. Maivizhikannan, J. Drews, V. Krishnan, Fabrication of nanoheterostructures of boron doped ZnO-MoS2 with enhanced photostability and photocatalytic activity for environmental remediation applications. Vacuum 163, 88 (2019). https://doi.org/10.1016/j.vacuum.2019.02.001

    Article  CAS  Google Scholar 

  13. A. Rani, K. Singh, A.S. Patel, A. Chakraborti, S. Kumar, K. Ghosh, Visible light driven photocatalysis of organic dyes using SnO2 decorated MoS2 nanocomposites. Chem. Phys. Lett. 738, 136874 (2020). https://doi.org/10.1016/j.cplett.2019.136874

    Article  CAS  Google Scholar 

  14. A. Beyhaqi, Q. Zeng, S. Chang, M. Wang, S.M.T. Azimi, C. Hu, Construction of g-C3N4/WO3/MoS2 ternary nanocomposite with enhanced charge separation and collection for efficient wastewater treatment under visible light. Chemosphere 247, 125784 (2020). https://doi.org/10.1016/j.chemosphere.2019.125784

    Article  CAS  Google Scholar 

  15. C. Nagaraja, M. Kaur, S. Dhingra, Enhanced visible-light-assisted photocatalytic hydrogen generation by MoS2/g-C3N4 nanocomposites. Int. J. Hydrogen Energy 45(15), 8497 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.042

    Article  CAS  Google Scholar 

  16. M. Li, J. Shi, L. Liu, P. Yu, N. Xi, Y. Wang, Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2. Sci. Technol. Adv. Mater. 17(1), 189 (2016). https://doi.org/10.1080/14686996.2016.1165584

    Article  CAS  Google Scholar 

  17. M.-H. Wu, L. Li, N. Liu, D.-J. Wang, Y.-C. Xue, L. Tang, Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: a review. Process Saf. Environ. Prot. 118, 40 (2018). https://doi.org/10.1016/j.psep.2018.06.025

    Article  CAS  Google Scholar 

  18. J. Bai, W. Lv, Z. Ni, Z. Wang, G. Chen, H. Xu, Integrating MoS2 on sulfur-doped porous g-C3N4 iostype heterojunction hybrids enhances visible-light photocatalytic performance. J. Alloys Compd. 768, 766 (2018). https://doi.org/10.1016/j.jallcom.2018.07.286

    Article  CAS  Google Scholar 

  19. W. Wang, L. Li, K. Wu, G. Zhu, S. Tan, W. Li, Hydrothermal synthesis of bimodal mesoporous MoS2 nanosheets and their hydrodeoxygenation properties. RSC Adv. 5(76), 61799 (2015). https://doi.org/10.1039/C5RA09690A

    Article  CAS  Google Scholar 

  20. A.T. Massey, R. Gusain, S. Kumari, O.P. Khatri, Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes. Ind. Eng. Chem. Res. 55(26), 7124 (2016). https://doi.org/10.1021/acs.iecr.6b01115

    Article  CAS  Google Scholar 

  21. D. Ayodhya, G. Veerabhadram, Stable and efficient graphitic carbon nitride nanosheet–supported ZnS composite catalysts toward competent catalytic performance for the reduction of 4-nitrophenol using NaBH4. Mater. Today Energy 5, 100015 (2019). https://doi.org/10.1016/j.mtsust.2019.100015

    Article  Google Scholar 

  22. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  23. M. Inagaki, T. Tsumura, T. Kinumoto, M. Toyoda, Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon 141, 580 (2019). https://doi.org/10.1016/j.carbon.2018.09.082

    Article  CAS  Google Scholar 

  24. Y.S. Ravindra, S.H. Puttaiah, S. Yadav, J.S. Prabagar, Evaluation of polymeric gC3N4 contained nonhierarchical ZnV2O6 composite for energy-efficient LED assisted photocatalytic mineralization of organic pollutant. J. Mater. Sci.: Mater. Electron. 31(19), 16806 (2020). https://doi.org/10.1007/s10854-020-04235-4

    Article  CAS  Google Scholar 

  25. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B 217, 388 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003

    Article  CAS  Google Scholar 

  26. X. Lin, C. Liu, J. Wang, S. Yang, J. Shi, Y. Hong, Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO4 microspheres: a ternary heterostructure photocatalyst for water purification. Sep. Purif. Technol. 226, 117 (2019). https://doi.org/10.1016/j.seppur.2019.05.093

    Article  CAS  Google Scholar 

  27. T. An, J. Tang, Y. Zhang, Y. Quan, X. Gong, A.M. Al-Enizi, Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires. ACS Appl. Mater. Interfaces 8(20), 12772 (2016). https://doi.org/10.1021/acsami.6b01534

    Article  CAS  Google Scholar 

  28. Q. Liu, D. Zhu, M. Guo, Y. Yu, Y. Cao, Facile and efficient fabrication of g-C3N4 quantum dots for fluorescent analysis of trace copper(II) in environmental samples. Chin. Chem. Lett. 30(9), 1639 (2019). https://doi.org/10.1016/j.cclet.2019.05.058

    Article  CAS  Google Scholar 

  29. S. Yan, Z. Li, Z. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17), 10397 (2009). https://doi.org/10.1021/la900923z

    Article  CAS  Google Scholar 

  30. Z. Zhou, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, Chemical cleavage of layered carbon nitride with enhanced photoluminescent performances and photoconduction. ACS Nano 9(12), 12480 (2015). https://doi.org/10.1021/acsnano.5b05924

    Article  CAS  Google Scholar 

  31. X. Zhang, H. Wang, H. Wang, Q. Zhang, J. Xie, Y. Tian, Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 26(26), 4438 (2014). https://doi.org/10.1002/adma.201400111

    Article  CAS  Google Scholar 

  32. M. Zarei, N. Seyedi, S. Maghsoudi, M. Shahabi Nejad, H. Sheibani, Synthesis of star-shaped CuO nanoparticles supported on magnetic functionalized graphene: catalytic and antibacterial activity. J. Chin. Chem. Soc. 67(11), 1992 (2020). https://doi.org/10.1002/jccs.202000097

    Article  CAS  Google Scholar 

  33. S. Thangavel, S. Thangavel, N. Raghavan, R. Alagu, G. Venugopal, Efficient visible-light photocatalytic and enhanced photocorrosion inhibition of Ag2WO4 decorated MoS2 nanosheets. J. Phys. Chem. Solids 110, 266 (2017). https://doi.org/10.1016/j.jpcs.2017.06.005

    Article  CAS  Google Scholar 

  34. X.Q. Qiao, F.C. Hu, F.Y. Tian, D.F. Hou, D.S. Li, Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. RSC Adv. 6(14), 11631 (2016). https://doi.org/10.1039/C5RA24328A

    Article  CAS  Google Scholar 

  35. L. Yang, X. Wu, L. Luo, Y. Liu, F. Wang, Facile preparation of graphitic-C3N4 quantum dots for application in two-photon imaging. New J. Chem. 43(7), 3174 (2019). https://doi.org/10.1039/C8NJ05740K

    Article  CAS  Google Scholar 

  36. C.Z. Li, Z.B. Wang, X.L. Sui, L.M. Zhang, D.M. Gu, Graphitic-C3N4 quantum dots modified carbon nanotubes as a novel support material for a low Pt loading fuel cell catalyst. RSC Adv. 6(38), 32290 (2016). https://doi.org/10.1039/C6RA02553F

    Article  CAS  Google Scholar 

  37. N.P. Moraes, F.N. Silva, M.L. Silva, T.M. Campos, G.P. Thim, L.A. Rodrigues, Methylene blue photodegradation employing hexagonal prism-shaped niobium oxide as heterogeneous catalyst: effect of catalyst dosage, dye concentration, and radiation source. Mater. Chem. Phys. 214, 95 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.063

    Article  CAS  Google Scholar 

  38. P. Mohammadi, H. Sheibani, Green synthesis of Fe3O4@SiO2-Ag magnetic nanocatalyst using safflower extract and its application as recoverable catalyst for reduction of dye pollutants in water. Appl. Organomet. Chem. 32(4), 4249 (2018). https://doi.org/10.1002/aoc.4249

    Article  CAS  Google Scholar 

  39. S. Li, J. Liao, Y. Dong, Y. Fu, Y. Zhu, Enhanced photocatalytic activity of ternary g-C3N4/NaTaO3/biomass carbon composite photocatalysts under visible-light radiation. J. Mater. Sci.: Mater. Electron. 31(22), 19613 (2020). https://doi.org/10.1007/s10854-020-04488-z

    Article  CAS  Google Scholar 

  40. K. Dai, H. Chen, T. Peng, D. Ke, H. Yi, Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere 69(9), 1361 (2007). https://doi.org/10.1016/j.chemosphere.2007.05.021

    Article  CAS  Google Scholar 

  41. S. Sohrabnezhad, Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst. Spectrochim. Acta A 81(1), 228 (2011). https://doi.org/10.1016/j.saa.2011.05.109

    Article  CAS  Google Scholar 

  42. P. Mohammadi, H. Sheibani, Evaluation of the bimetallic photocatalytic performance of Resin–Au–Pd nanocomposite for degradation of parathion pesticide under visible light. Polyhedron 170, 132 (2019). https://doi.org/10.1016/j.poly.2019.05.030

    Article  CAS  Google Scholar 

  43. Z. Zhu, P. Huo, Z. Lu, Y. Yan, Z. Liu, W. Shi, C. Li, H. Dong, Fabrication of magnetically recoverable photocatalysts using g-C3N4 for effective separation of charge carriers through like-Z-scheme mechanism with Fe3O4 mediator. Chem. Eng. J. 331, 615 (2018). https://doi.org/10.1016/j.cej.2017.08.131

    Article  CAS  Google Scholar 

  44. Z. Ma, L. Hu, X. Li, L. Deng, G. Fan, Y. He, A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation. Ceram. Int. 45(13), 15824 (2019). https://doi.org/10.1016/j.ceramint.2019.05.085

    Article  CAS  Google Scholar 

  45. L. Zou, R. Qu, H. Gao, X. Guan, X. Qi, C. Liu, MoS2/RGO hybrids prepared by a hydrothermal route as a highly efficient catalytic for sonocatalytic degradation of methylene blue. Results Phys. 14, 102458 (2019). https://doi.org/10.1016/j.rinp.2019.102458

    Article  Google Scholar 

  46. L. Shi, Z. He, S. Liu, MoS2 quantum dots embedded in g-C3N4 frameworks: a hybrid 0D–2D heterojunction as an efficient visible-light driven photocatalyst. Appl. Surf. Sci. 457, 30 (2018). https://doi.org/10.1016/j.apsusc.2018.06.132

    Article  CAS  Google Scholar 

  47. W. Zhang, X. Xiao, L. Zheng, C. Wan, Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light. Appl. Surf. Sci. 358, 468 (2015). https://doi.org/10.1016/j.apsusc.2015.08.054

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazem Saidi or Hassan Sheibani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, M., Mohammadzadeh, I., Saidi, K. et al. g-C3N4 quantum dot decorated MoS2/Fe3O4 as a novel recoverable catalyst for photodegradation of organic pollutant under visible light. J Mater Sci: Mater Electron 32, 26213–26231 (2021). https://doi.org/10.1007/s10854-021-06790-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06790-w

Navigation