Skip to main content
Log in

Electrical properties of La0.72Ca0.28MnO3: Ag0.2 thin films of different deposition time prepared by deposited pulsed laser method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The LCMO: Ag0.2 thin film was grown on the tilted LAO substrate by pulsed laser technology. The structural and electrical properties of the thin film were studied with different deposition times. The X-Ray diffraction analysis demonstrated that all film samples showed exhibit mixed growth and have high crystalline quality. The surface morphology of the films was characterized by atomic force microscopy, and the surface roughness of the films decreased as the deposition time increased. Electrical properties tests show that the peak voltages Up of LIV signals of the films reach their maximum at a deposition time of 10 min, while it also having the TCRmax = 18.43%·K−1. The testing results show that the presence of optimal film thickness can enhance the anisotropic Seebeck coefficient of the film, which in turn improves the film properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Phys Rev Lett 75, 3336 (1995). https://doi.org/10.1103/PhysRevLett.75.3336

    Article  CAS  Google Scholar 

  2. Y.B. Zhang, S. Li, C.Q. Sun, W. Gao, Mater. Sci. Eng., B 98, 54 (2003). https://doi.org/10.1016/s0921-5107(02)00758-4

    Article  Google Scholar 

  3. T.A. Mellan, F. Corà, R. Grau-Crespo, S. Ismail-Beigi, Phys. Rev. B (2015). https://doi.org/10.1103/PhysRevB.92.085151

    Article  Google Scholar 

  4. D. Xian-Lin, W. Gen-Shui, C. Ying, T. Xiao-Dong, Z. Yuan-Yuan, J. Inorgan. Mater. (2016). https://doi.org/10.15541/jim20150397

    Article  Google Scholar 

  5. G. Jung, V. Markovich, Y. Yuzhelevski et al., J. Magn. Magn. Mater. 272–276, 1800 (2004). https://doi.org/10.1016/j.jmmm.2003.12.1049

    Article  CAS  Google Scholar 

  6. R.L. Zhang, Y. Feng, W.H. Song et al., J. Magn. Magn. Mater. 281, 318 (2004). https://doi.org/10.1016/j.jmmm.2004.04.121

    Article  CAS  Google Scholar 

  7. D.H. Manh, N.C. Thuan, P.T. Phong, L.V. Hong, N.X. Phuc, J. Alloy. Compd. 479, 828 (2009). https://doi.org/10.1016/j.jallcom.2009.01.049

    Article  CAS  Google Scholar 

  8. U.K.G.A. Gaur, K. Yadav, G.D. Varma, J. Optoelectron. Adv. Mater. 4, 989 (2010)

    CAS  Google Scholar 

  9. M. Orvatinia, M. Heydarianasl, Sens. Actuators, A 174, 52 (2012). https://doi.org/10.1016/j.sna.2011.11.026

    Article  CAS  Google Scholar 

  10. D. Fan, Q. Li, Y. Xuan, H. Tan, J. Fang, Appl. Therm. Eng. 51, 255 (2013). https://doi.org/10.1016/j.applthermaleng.2012.07.046

    Article  CAS  Google Scholar 

  11. T.H. Elbio Dagotto, Adriana Moreo, Phys. Rep. 344, 1 (2001)

    Article  Google Scholar 

  12. E. Rozenberg, M. Auslender, A.I. Shames, Y.M. Mukovskii, E. Sominski, A. Gedanken, J. Non-Cryst. Solids 354, 5282 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.05.087

    Article  CAS  Google Scholar 

  13. P. Srivastava, O.N. Srivastava, H.K. Singh, P.K. Siwach, J. Alloy. Compd. 459, 61 (2008). https://doi.org/10.1016/j.jallcom.2007.05.033

    Article  CAS  Google Scholar 

  14. G. Venkataiah, D.C. Krishna, M. Vithal et al., Physica B 357, 370 (2005). https://doi.org/10.1016/j.physb.2004.12.001

    Article  CAS  Google Scholar 

  15. G. Li, H.D. Zhou, S.J. Feng, X.J. Fan, X.G. Li, Z.D. Wang, J. Appl. Phys. 92, 1406 (2002). https://doi.org/10.1063/1.1490153

    Article  CAS  Google Scholar 

  16. F.L. Tang, X. Zhang, J. Phys.: Condens. Matter 18, 7851 (2006). https://doi.org/10.1088/0953-8984/18/34/001

    Article  CAS  Google Scholar 

  17. F.-L. Tang, Y.-X. Hu, W.-J. Lu et al., J. Magn. Magn. Mater. 333, 8 (2013). https://doi.org/10.1016/j.jmmm.2012.12.032

    Article  CAS  Google Scholar 

  18. C.L. Chang, A. Kleinhammes, W.G. Moulton, L.R. Testardi, Phys Rev B Condens Matter 41, 11564 (1990). https://doi.org/10.1103/physrevb.41.11564

    Article  CAS  Google Scholar 

  19. X. Ding, Q.M. Chen, J. Ma, M. Theingi, Y.J. Li, H. Zhang, Key Eng. Mater. 519, 184 (2012)

    Article  CAS  Google Scholar 

  20. H. Lengfellner, S. Zeuner, W. Prettl, K.F. Renk, Europhys. Lett. (EPL) 25, 375 (1994). https://doi.org/10.1209/0295-5075/25/5/011

    Article  CAS  Google Scholar 

  21. X.H.L.H.-U. Habermeiera, P.X. Zhang, B. Leibold, Solid State Commun. 110, 473 (1999)

    Article  Google Scholar 

  22. P.X. Zhang, C. Wang, S.L. Tan, H. Zhang, H.U. Habermeier, J. Cryst. Growth 310, 2732 (2008). https://doi.org/10.1016/j.jcrysgro.2008.01.044

    Article  CAS  Google Scholar 

  23. R. Gross, L. Alff, B. Buchner et al., J. Magn. Magn. Mater. 211, 150 (2000). https://doi.org/10.1016/s0304-8853(99)00727-1

    Article  CAS  Google Scholar 

  24. V.P.S. Awana, R. Tripathi, S. Balamurugan, H. Kishan, E. Takayama-Muromachi, Solid State Commun. 140, 410 (2006). https://doi.org/10.1016/j.ssc.2006.09.021

    Article  CAS  Google Scholar 

  25. P.-X. Zhang, S.-J. Zhu, X. Liu, J.-B. Peng, T.W. Kim, H.U. Habermeier, Jpn. J. Appl. Phys. 45, 727 (2006). https://doi.org/10.1143/jjap.45.727

    Article  CAS  Google Scholar 

  26. J.H. Kim, A.M. Grishin, H.H. Radamson, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2150260

    Article  Google Scholar 

  27. Y.-P. Yi-Zhi, L. Xiang, C. Qing-Ming, J. Inorg. Mater. 29, 754 (2014). https://doi.org/10.3724/SP.J.1077.2014.13562

    Article  CAS  Google Scholar 

  28. A. Purohit, S. Chander, S.P. Nehra, C. Lal, M.S. Dhaka, Opt. Mater. 47, 345 (2015). https://doi.org/10.1016/j.optmat.2015.05.053

    Article  CAS  Google Scholar 

  29. Q.Y. Xie, X.S. Wu, J. Li, B. Lv, J. Gao, Thin Solid Films 545, 89 (2013). https://doi.org/10.1016/j.tsf.2013.07.036

    Article  CAS  Google Scholar 

  30. A.M.B. Vengalis, F. Anisimovas, R. Butkute, L. Dapkus, A. Kindurys, J. Magnet. Magnet. Mater. 211, 35 (2000)

    Article  CAS  Google Scholar 

  31. D. Rasic, R. Sachan, N.K. Temizer, J. Prater, J. Narayan, ACS Appl. Mater. Interfaces 10, 21001 (2018). https://doi.org/10.1021/acsami.8b05929

    Article  CAS  Google Scholar 

  32. J. Zhao, C. Liu, J. Li et al., AIP Adv. (2019). https://doi.org/10.1063/1.5088738

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11564021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Li, Y., Li, Z. et al. Electrical properties of La0.72Ca0.28MnO3: Ag0.2 thin films of different deposition time prepared by deposited pulsed laser method. J Mater Sci: Mater Electron 32, 22999–23006 (2021). https://doi.org/10.1007/s10854-021-06784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06784-8

Navigation