Skip to main content

Advertisement

Log in

Multiwalled carbon nanotubes grown over green iron nanocatalyst as electrode for hydrogen-producing electrochemical cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to develop sustainable and renewable energy sources, novel approaches to design noble metal-free efficient electrocatalysts such as carbon and metal dichalcogenides nanostructures are being investigated for hydrogen evolution reaction (HER). In the present work, we successfully synthesize iron nanoparticles (Fe–GT) via facile green approach without using any surfactant and for the first time, green-synthesized iron nanoparticles are utilized as catalysts for production of multiwalled carbon nanotubes (MWCNTs). The synthesized MWCNTs (GT) were characterized using SEM, TEM, XRD and Raman spectroscopy techniques. The MWCNTs (GT)-coated conducting carbon paper electrode was applied as non-precious metal electrocatalyst for HER. The MWCNTs (GT) electrode demonstrates improved electrochemical activity towards HER with a smaller value of Tafel slope ~ 105 mV dec− 1 and overpotential (η10) ~ 192 mV, which is quite comparable to other reported metal-free HER catalyst. We also designed an indigenous electrochemical cell and showed the hydrogen production and collection using MWCNTs (GT) as cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.A. Turner, Science. 305, 972 (2004)

    Article  CAS  Google Scholar 

  2. J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Nat. Mater. 5, 909 (2006)

    Article  CAS  Google Scholar 

  3. A. Le Goff, V. Artero, B. Jousselme, P. Tran, N. Guillet, Science. 326, 1384 (2009)

    Article  Google Scholar 

  4. A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Chem. Rev. 114, 7150 (2014)

    Article  CAS  Google Scholar 

  5. M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E.I. Kauppinen, T. Kallio, K. Laasonen, ACS Catal. 7, 3121 (2017)

    Article  CAS  Google Scholar 

  6. H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao, Z. Tang, Nat. Commun. 6, 1 (2015)

    CAS  Google Scholar 

  7. A. Eftekhari, Int. J. Hydrogen Energy 42, 11053 (2017)

    Article  CAS  Google Scholar 

  8. R. Zhang, S.M. El-Refaei, P.A. Russo, N. Pinna, J. Nanoparticle Res. 20, 1 (2018)

    Article  Google Scholar 

  9. A.K. Mishra, S. Ramaprabhu, J. Nanosci. Nanotechnol. 12, 6658 (2012)

    Article  CAS  Google Scholar 

  10. A.K. Mishra, S. Ramaprabhu, J. Exp. Nanosci. 7, 85 (2012)

    Article  CAS  Google Scholar 

  11. B.R. Sathe, X. Zou, T. Asefa, Catal. Sci. Technol. 4, 2023 (2014)

    Article  Google Scholar 

  12. B. Deng, D. Wang, Z. Jiang, J. Zhang, S. Shi, Z.J. Jiang, M. Liu, Carbon N. Y. 138, 169 (2018)

    Article  CAS  Google Scholar 

  13. L. Wei, H.E. Karahan, K. Goh, W. Jiang, D. Yu, Ö Birer, R. Jiang, Y. Chen, J. Mater. Chem. A 3, 7210 (2015)

    Article  CAS  Google Scholar 

  14. J. Zhuo, T. Wang, G. Zhang, L. Liu, L. Gan, M. Li, Angew. Chemie - Int. Ed. 52, 10867 (2013)

    Article  CAS  Google Scholar 

  15. M. Kumar, Y. Ando, Chem. Phys. Lett. 374, 521 (2003)

    Article  CAS  Google Scholar 

  16. S. Paul, S.K. Samdarshi, Xinxing Tan Cailiao/New Carbon Mater. 26, 85 (2011)

    Article  CAS  Google Scholar 

  17. S.H. Abdullayeva, N.N. Musayeva, R.B. Jabbarov, T. Matsuda, World J. Condens. Matter Phys. 04, 93 (2014)

    Article  Google Scholar 

  18. N. Tripathi, V. Pavelyev, S.S. Islam, Appl. Nanosci. 7, 557 (2017)

    Article  CAS  Google Scholar 

  19. W. Cui, Q. Liu, N. Cheng, A.M. Asiri, X. Sun, Chem. Commun. 50, 9340 (2014)

    Article  CAS  Google Scholar 

  20. T. Li, D. Tang, Z. Cui, B. Cai, D. Li, Q. Chen, C.M. Li, Electrocatalysis 9, 573 (2018)

    Article  CAS  Google Scholar 

  21. T. Li, Z. Cui, W. Yuan, C.M. Li, RSC Adv. 6, 12792 (2016)

    Article  CAS  Google Scholar 

  22. T.K. Nguyen, A.G. Bannov, M.V. Popov, J.W. Yun, A.D. Nguyen, Y.S. Kim, Int. J. Hydrogen Energy 43, 6526 (2018)

    Article  CAS  Google Scholar 

  23. G. KSV, J. Nanomedine. Biotherapeutic Discov. 07, 1 (2017)

    Article  Google Scholar 

  24. A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar, A. Al-Warthan, Arab. J. Chem. 5, 1 (2012)

    Article  CAS  Google Scholar 

  25. H.Bin Zhang, G.D. Lin, Z.H. Zhou, X. Dong, T. Chen, Carbon N. Y. 40, 2429 (2002)

    Article  CAS  Google Scholar 

  26. M. Flygare, K. Svensson, Mater. Today Commun. 18, 39 (2019)

    Article  CAS  Google Scholar 

  27. J.H. Chen, W.G. Cullen, C. Jang, M.S. Fuhrer, E.D. Williams, Phys. Rev. Lett. 102, 1 (2009)

    Google Scholar 

  28. H. Wang, Y. Wang, Z. Hu, X. Wang, ACS Appl. Mater. Interfaces 4, 6827 (2012)

    Article  CAS  Google Scholar 

  29. R.A. DiLeo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101, 064307 (2007)

    Article  Google Scholar 

  30. N. Sezer, M. Koç, Surfaces and Interfaces 14, 1 (2019)

    Article  CAS  Google Scholar 

  31. X. Jiang, J. Gu, X. Bai, L. Lin, Y. Zhang, Pigment Resin Technol. 38, 165 (2009)

    Article  Google Scholar 

  32. O.A. Petrii, G.A. Tsirlina, Electrochim. Acta 39, 1739 (1994)

    Article  CAS  Google Scholar 

  33. S. Mishra, A.K. Mishra, Electroanalysis 32, 2564 (2020)

    Article  CAS  Google Scholar 

  34. R. Kronberg, H. Lappalainen, K. Laasonen, Phys. Chem. Chem. Phys. 22, 10536 (2020)

    Article  CAS  Google Scholar 

  35. C.J. Oluigbo, M. Xie, N. Ullah, S. Yang, W. Zhao, M. Zhang, X. Lv, Y. Xu, J. Xie, Int. J. Hydrogen Energy 44, 2685 (2019)

    Article  CAS  Google Scholar 

  36. Z. Shi, Y. Wang, H. Lin, H. Zhang, M. Shen, S. Xie, Y. Zhang, Q. Gao, Y. Tang, J. Mater. Chem. A 4, 6006 (2016)

    Article  CAS  Google Scholar 

  37. C. Du, H. Huang, Y. Wu, S. Wu, W. Song, Nanoscale 8, 16251 (2016)

    Article  CAS  Google Scholar 

  38. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977 (2013)

    Article  CAS  Google Scholar 

  39. Y. Zhang, X. Fan, J. Jian, D. Yu, Z. Zhang, L. Dai, Energy Environ. Sci. 10, 2312 (2018)

    Article  Google Scholar 

  40. P. Connor, J. Schuch, B. Kaiser, W. Jaegermann, Zeitschrift Fur Phys. Chemie 234, 979 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

“This manuscript is part of the special issue of selected papers from the 6th edition of biennial International Conference on Nanoscience and Nanotechnology (ICONN-2021)”. Authors thank IIT (BHU) and its Central Instrument Facility, SERB, India (Grant No. ECR/2017/000558 and CRG/2020/002186) and DST, India (Grant No. IFA14-MS25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1928 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Jaiswal, S.S. & Mishra, A.K. Multiwalled carbon nanotubes grown over green iron nanocatalyst as electrode for hydrogen-producing electrochemical cell. J Mater Sci: Mater Electron 33, 8702–8710 (2022). https://doi.org/10.1007/s10854-021-06772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06772-y

Navigation