Skip to main content
Log in

Synthesis, growth, crystal structure, thermal, optical, electrical and third-order nonlinear optical properties of creatininium phthalate as a new nonlinear optical single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new organic single crystal with a proton-transfer complex of creatininium phthalate (CP) is prepared and grown successfully at room temperature by slow evaporation solution technique. The solubility of the synthesized CP crystal was experimentally determined using water solvent at various temperatures (30–55 °C). The CP crystal is found to be a triclinic system with centrosymmetric nature and P-1 space group using single crystal X-ray diffraction (SXRD). The observed lattice parameters are a = 7.728 Å, b = 9.947 Å, c = 10.007 Å and volume = 639 Å. Crystalline nature of CP crystal is confirmed using Powder XRD. EDAX analysis of CP crystal confirms the presence of C, O, and N. FT-IR and RAMAN analysis was employed to find the elemental groups exist in the CP crystal. The transmittance and optical absorption of the CP crystal was recorded using UV–Vis analysis and calculated the absorption coefficient and bandgap of the CP crystal. The thermal stability and melting point of the CP crystal was examined by TG–DTA technique. The dielectric property of low dielectric constant with high frequency proposes that CP crystal contains good optical quality with less defects. Mechanical strength of the CP crystal was found out using Vickers microhardness test. Chemical etching analysis was determined to reveal that the lattice defects, crystal symmetry and perfection of the CP crystal using an optical microscope. The nonlinear refractive index (n2 = 20.02 × 10–8 cm2/W), nonlinear absorption coefficient (β = 0.54 × 10−3 cm/W) and third-order optical nonlinear susceptibility (χ3 = 1.12 × 10–6 esu) of CP crystal was estimated by Z-scan analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Karuppasamy, V. Sivasubramani, M.S. Pandian, P. Ramasamy, RSC Adv. 6(110), 109105–109123 (2016). https://doi.org/10.1039/c6ra21590d

    Article  CAS  Google Scholar 

  2. D. Sajan, N. Vijayan, K. Safakath, R. Philip, I.H. Joe, J. Phys. Chem. A 115(29), 8216–8226 (2011). https://doi.org/10.1021/jp201818y

    Article  CAS  Google Scholar 

  3. A. Alexandar, P. Rameshkumar, Optik 168, 944–955 (2018). https://doi.org/10.1016/j.ijleo.2018.04.100

    Article  CAS  Google Scholar 

  4. T. Pal, T. Kar, G. Bocelli, L. Rigi, Cryst. Growth Des. 3(1), 13–16 (2003). https://doi.org/10.1021/cg025583y

    Article  CAS  Google Scholar 

  5. P. Asokan, S. Kalainathan, J. Phys. Chem. C 121(40), 22384–22395 (2017). https://doi.org/10.1021/acs.jpcc.7b07805

    Article  CAS  Google Scholar 

  6. J. Jeyaram, K. Varadharajan, B. Singaram, R. Rajendhran, Adv. Mater. Dev. 2(4), 445–454 (2017). https://doi.org/10.1016/j.jsamd.2017.09.004

    Article  Google Scholar 

  7. N. Sudha, B. Abinaya, R. Arun Kumar, R. Mathammal, J. Lasers Opt. Photonics 05(02), 1–6 (2018). https://doi.org/10.4172/2469-410x.1000184

    Article  CAS  Google Scholar 

  8. R. Sankar, C.M. Raghavan, M. Balaji, R.M. Kumar, R. Jayavel, Cryst. Growth Des. 7(2), 348–353 (2007). https://doi.org/10.1021/cg060566k

    Article  CAS  Google Scholar 

  9. T. Chen, Z. Sun, C. Song, Y. Ge, J. Luo, W. Lin, M. Hong, Cryst. Growth Des. 12(5), 2673–2678 (2012). https://doi.org/10.1021/cg300262t

    Article  CAS  Google Scholar 

  10. P.V. Dhanaraj, N.P. Rajesh, Applications of Calorimetry in a Wide Context—Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry (2013). https://doi.org/10.5772/53795

  11. N. Karuppanan, S. Kalainathan, J. Phys. Chem. C 122(8), 4572–4582 (2018). https://doi.org/10.1021/acs.jpcc.7b11884

    Article  CAS  Google Scholar 

  12. R. Thirumurugan, K. Anitha, Mater. Lett. 206, 30–33 (2017). https://doi.org/10.1016/j.matlet.2017.06.103

    Article  CAS  Google Scholar 

  13. K. Senthil, S. Kalainathan, A.R. Kumar, P.G. Aravindan, RSC Adv. 4(99), 56112–56127 (2014). https://doi.org/10.1039/c4ra09112d

    Article  CAS  Google Scholar 

  14. R. Thirumurugan, B. Babu, K. Anitha, J. Chandrasekaran, Zeitschrift Für Physikalische Chemie 231(11–12), 1849–1874 (2017). https://doi.org/10.1515/zpch-2016-0896

    Article  CAS  Google Scholar 

  15. S. Sindhusha, C.M. Padma, B. Gunasekaran, J. Mol. Struct. 1221, 128863 (2020). https://doi.org/10.1016/J.Molstruc.2020.128863

    Article  CAS  Google Scholar 

  16. R. Thirumurugan, B. Babu, K. Anitha, J. Chandrasekaran, Mater. Lett. 185, 214–217 (2016). https://doi.org/10.1016/j.matlet.2016.08.127

    Article  CAS  Google Scholar 

  17. P. Justin, K. Anitha, M.B. Ahamed, G.V. Vijayaraghavan, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01308-x

    Article  Google Scholar 

  18. G.M. Sheldrick, SADABS University of Gottingen Germany (2018)

  19. G.M. Sheldrick, SHELXS97 & SHELXL97 University of Gottingen Germany (2018)

  20. J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem. Int. Ed. 34(15), 1555–1573 (1995). https://doi.org/10.1002/anie.199515551

    Article  CAS  Google Scholar 

  21. R. Thirumurugan, K. Anitha, (2015). https://doi.org/10.1063/1.4918050

  22. R. Thirumurugan, K. Anitha, J. Mol. Struct. 1146, 273–284 (2017). https://doi.org/10.1016/j.molstruc.2017.05.143

    Article  CAS  Google Scholar 

  23. P. Krishnan, K. Gayathri, P.R. Rajakumar, V. Jayaramakrishnan, S. Gunasekaran, G. Anbalagan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 114–124 (2014). https://doi.org/10.1016/j.saa.2014.03.040

    Article  CAS  Google Scholar 

  24. R. Thirumurugan, B. Babu, K. Anitha, J. Chandrasekaran, J. Mol. Struct. 1149, 48–57 (2017). https://doi.org/10.1016/j.molstruc.2017.07.095

    Article  CAS  Google Scholar 

  25. E. Tarcan, Ö. Altındağ, D. Avcı, Y. Atalay, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71(1), 169–174 (2008). https://doi.org/10.1016/j.saa.2007.12.008

    Article  CAS  Google Scholar 

  26. V. Chithambaram, S. Jerome Das, R. Arivudai Nambi, K. Srinivasan, S. Krishnan, Physica B Condens. Matter 405(12), 2605–2609 (2010). https://doi.org/10.1016/j.physb.2010.03.00

    Article  CAS  Google Scholar 

  27. J.E.M. Theras, D. Kalaivani, D. Jayaraman, V. Joseph, J. Cryst. Growth 427, 29–35 (2015). https://doi.org/10.1016/j.jcrysgro.2015.06.009

    Article  CAS  Google Scholar 

  28. A. Jahubar Ali, S. Thangarasu, S. Athimoolam, S. Asath Bahadur, RJPBCS 4(1), 1292 (2013)

    CAS  Google Scholar 

  29. R. Bhuvaneswari, M. Divya Bharathi, G. Anbalagan, K. Sakthi Murugesan, Investigation on the growth, spectral, thermal, laser and optical properties of glycinium 2-carboxy 6-nitrophthalate single crystal. Opt. Mater. 84, 728–737 (2018). https://doi.org/10.1016/j.optmat.2018.08.018

    Article  CAS  Google Scholar 

  30. A. Hemalatha, S. Arulmani, K. Deepa, D.S. Kumar, J. Madavan, S. Senthil, Mater. Today Proc. 8, 142–147 (2019). https://doi.org/10.1016/j.matpr.2019.02.092

    Article  CAS  Google Scholar 

  31. S.S. Dhavud, J.T.J. Prakash, Int. J. Adv. Res. 4(8), 685–695 (2016). https://doi.org/10.21474/IJAR01/1264

    Article  CAS  Google Scholar 

  32. S. Sindhusha, C.M. Padma, B. Gunasekaran, H. Marshan Robert, J. Mol. Struct. 1209, 127981 (2020)

    Article  CAS  Google Scholar 

  33. A. Jahubar Ali, S. Thangarasu, S. Athimoolam, B. Sridhar, S. Asath Bahadur, Arch. Phys. Res. 3(5), 354–362 (2012)

    CAS  Google Scholar 

  34. N. Natarajan, R. Mahalakshmi, S. Sagadevan, Mater. Res. 18(3), 581–587 (2015). https://doi.org/10.1590/1516-1439.007015

    Article  CAS  Google Scholar 

  35. V. Siva, S.A. Bahadur, A. Shameem, S. Athimoolam, K.U. Lakshmi, G. Vinitha, J. Mol. Struct. (2019). https://doi.org/10.1016/j.molstruc.2019.04

    Article  Google Scholar 

  36. S. Dinakaran, S. Verma, C.J. Raj, J.M. Linet, S. Krishnan, S.J. Das, Cryst. Growth Des. 9(1), 151–155 (2009). https://doi.org/10.1021/cg8000834

    Article  CAS  Google Scholar 

  37. G.L. Praveena, T. Balu, R. Sreedevi, IOSR J. Appl. Phys. (IOSR-JAP) 2278–4861, 8, 61–68 (2016). https://doi.org/10.9790/4861-08116168

  38. K. Pichan, S.P. Muthu, R. Perumalsamy, J. Cryst. Growth 473, 39–54 (2017). https://doi.org/10.1016/j.jcrysgro.2017.05.018

    Article  CAS  Google Scholar 

  39. P. Karuppasamy, T. Kamalesh, K. Anitha, S. Abdul Kalam, M. Senthil Pandian, P. Ramasamy, S. Venugopal Rao, Opt. Mater. 84, 475–489 (2018). https://doi.org/10.1016/j.optmat.2018.07.039

    Article  CAS  Google Scholar 

  40. B. Sivakumar, S. Gokul Raj, G. Ramesh Kumar, R. Mohan, J. Cryst. Process Technol. 2, 130–136 (2012). https://doi.org/10.4236/jcpt.2012.24018

    Article  CAS  Google Scholar 

  41. P. Vivek, P. Murugakoothan, Appl. Phys. A 115(4), 1139–1146 (2014). https://doi.org/10.1007/s00339-014-8435-y

    Article  CAS  Google Scholar 

  42. N. Indumathi, P. Sanjay, K. Deepa, J. Madhavan, S. Senthil, Mater. Sci. Eng. 360, 012032 (2018). https://doi.org/10.1088/1757-899x/360/1/012032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SRMIST for providing the financial facility to carry out the research work. We acknowledge the Nanotechnology Research Centre (NRC), SRMIST for providing the research facilities such as XRD, UV–Vis, FTIR and EDS. And also SCIF, SRMIST, Kattankulathur, for providing excellent research facilities such as SEM and Raman analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gunasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surya, S., Gunasekaran, B. & Girisun, T.C.S. Synthesis, growth, crystal structure, thermal, optical, electrical and third-order nonlinear optical properties of creatininium phthalate as a new nonlinear optical single crystal. J Mater Sci: Mater Electron 33, 8683–8701 (2022). https://doi.org/10.1007/s10854-021-06771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06771-z

Navigation