Skip to main content
Log in

Synthesis of metallic surface plasmon-sensitized TiO2 nanowire for wettability application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The wettability-switching properties of superhydrophobic/hydrophilic surfaces have generated significant interest to researchers worldwide. Controlling the wettability on the surface holds considerable promise for potential applications like self-cleaning surfaces, anti-freezing, and anti-corrosion. Switching wettability is still a challenging issue in research field. In this work, we have synthesized gold (Au)-decorated TiO2 nanowire (NW) and analyzed the switching wettability behavior under specific UV light conditions. The wettability test result displays the water contact angle (WCA) of Au-decorated TiO2-NW and TiO2-NW as 122° and 70°, respectively. After the UV irradiation, WCA of the Au-decorated TiO2-NW and TiO2-NW changed to 47° and 43°, the wettability transition rate obtained was 2.3 × 10–4 degree−1 min−1 and 1.5 × 10–4 degree−1 min−1, respectively. The value of friction force and work of adhesion of Au-decorated TiO2-NW is 14.10 µN and 34.22 mN/m. Improved switching wettability behavior has been observed for Au-decorated TiO2-NW compared to TiO2-NW sample. This improvement is due to effective carrier separation and enhanced lifetime of charge carriers. Hence the enhanced wettability parameters in Au-decorated TiO2-NW structure can provide a great potential application in self-cleaning and antifogging smart surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. T. Padmanabhan, H. John, Titanium dioxide based self-cleaning smart surfaces: a short review. J. Environ. Chem. Eng (2020). https://doi.org/10.1016/j.jece.2020.104211

  2. D.D. Purkayastha, L.D. Varma Sangani, M.G. Krishna, V. Madhurima, Photo-induced wettability of TiO2 film with Au buffer layer. AIP Conf. Proc. 1591, 881–883 (2014). https://doi.org/10.1063/1.4872789

  3. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997). https://doi.org/10.1038/41233

    Article  CAS  Google Scholar 

  4. Xu. Hua, S. Ouyang, L. Liu, P. Reunchan, N. Umezawa, J. Ye, Recent advances in TiO2-based photocatalysis. J Mater Chem A 2, 12642–12661 (2014). https://doi.org/10.1039/C4TA00941J

    Article  Google Scholar 

  5. A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001

  6. T. Dey, D. Naughton, Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective. J. Sol-Gel. Sci. Technol. 77, 1–27 (2016). https://doi.org/10.1007/s10971-015-3879-x

    Article  CAS  Google Scholar 

  7. P. Ragesh, V.A. Ganesh, S.V. Nair, A. Sreekumaran Nair, A review on self-cleaning and multifunctional materials. J Mater Chem A 2, 14773–14796 (2014). https://doi.org/10.1039/C4TA02542C

  8. D. Sun, K.F. Böhringer, An active self-cleaning surface system for photovoltaic modules using anisotropic ratchet conveyors and mechanical vibration. Microsyst. Nanoeng (2020). https://doi.org/10.1038/s41378-020-00197-z

  9. K. Qi, X. Wang, J.H. Xin, Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Text. Res. J. 81, 101–110 (2011). https://doi.org/10.1177/0040517510383618

    Article  CAS  Google Scholar 

  10. D. Upadhaya, P. Kumar, D.D. Purkayastha, Superhydrophobic ZnO/TiO2 heterostructure with significantly enhanced photocatalytic activity. J. Mater. Sci. Mater Elect 30, 10399–10407 (2019). https://doi.org/10.1007/s10854-019-01381-2

  11. D. Upadhaya, P. Kumar, D.D. Purkayastha, Superhydrophilicity of photocatalytic ZnO/SnO2 heterostructure for self-cleaning applications. J. Sol-Gel Sci. Technol. 92, 575–584 (2019). https://doi.org/10.1007/s10971-019-05127-8

  12. X. Chen, J. Ye, S. Ouyang, T. Kako, Z. Li, Z. Zou, Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 5, 4310–4318 (2011). https://doi.org/10.1021/nn200100v

    Article  CAS  Google Scholar 

  13. G. Xi, J. Ye, Q. Ma, Su. Ning, H. Bai, C. Wang, In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J. Am. Chem. Soc. 134, 6508–6511 (2012). https://doi.org/10.1021/ja211638e

    Article  CAS  Google Scholar 

  14. Di. Chen, J. Ye, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Func. Mater. 18, 1922–1928 (2008). https://doi.org/10.1002/adfm.200701468

    Article  CAS  Google Scholar 

  15. S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B 176–177, 396–428 (2015). https://doi.org/10.1016/j.apcatb.2015.03.058

    Article  CAS  Google Scholar 

  16. M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K-Q. Zhang, S.S. Al-Deyab, Y. Lai, A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 4, 6772–6801 (2016). https://doi.org/10.1039/C5TA09323F

  17. Y-C. Pu, G. Wang, K-D. Chang, Y. Ling, Y-K. Lin, B.C. Fitzmorris, C-M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y-J. Hsu, Y. Li, Au-nanostructure decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817–3823 (2013). https://doi.org/10.1021/nl4018385

  18. L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, C. Lin, Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. J. Hazard. Mater. 171, 1045–1050 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.115

    Article  CAS  Google Scholar 

  19. T.D. Kang, J-G. Yoon, Optical characterization of surface plasmon resonance of Pt nanoparticles in TiO2-SiO2 nanocomposite film. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4993980

  20. T.T. Jiang, C.C. Jia, L.C. Zhang, S.R. He, Y.H. Sang, H.D. Li, Y.Q. Li, X.H. Xu, H. Liu, Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. Nanoscale 7, 209–217 (2015). https://doi.org/10.1039/C4NR05905K

    Article  CAS  Google Scholar 

  21. M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. (2011). https://doi.org/10.1088/0022-3727/44/28/283001

  22. H. Peeters, M. Keulemans, G. Nuyts, F. Vanmeert, C. Li, M. Minjauw, C. Detavernier, S. Bals, S. Lenaerts, S.W. Verbruggen, Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings, Appl. Catal. B Environ (2020). https://doi.org/10.1016/j.apcatb.2020.118654

  23. B. Shougaijam, C. Ngangbam, T.R. Lenka, Plasmon-sensitized optoelectronic properties of Au nanoparticle-assisted vertically aligned TiO2 nanowires by GLAD technique. IEEE Transact Elect Dev 64, 1127–1133 (2017). https://doi.org/10.1109/TED.2017.2648500

  24. K.K. Kashyap, B. Choudhuri, P. Chinnamuthu, Enhanced optical and electrical properties of metallic surface plasmon sensitized TiO2 nanowires. IEEE Trans. Nanotechnol. 19, 519–526 (2020). https://doi.org/10.1109/tnano.2020.3004876

    Article  CAS  Google Scholar 

  25. M.K. Khan, Q.Y. Wang, M.E. Fitzpatrick, Atomic force microscopy (AFM) for materials characterization, ed. By G. Huebschen, I. Altpeter, R. Tschuncky, H-G. Herrmann (Woodhead Publishing, London, 2016), pp. 1–16. https://doi.org/10.1016/B978-0-08-100040-3.00001-8

  26. M.A. Quetzeri-Santiago, A.A. Castrejón-Pita, J.R. Castrejón-Pita, The effect of surface roughness on the contact line and splashing dynamics of impacting droplets. Scientific Rep (2019). https://doi.org/10.1038/s41598-019-51490-5

  27. K.J. Kubiak, M.C.T. Wilson, T.G. Mathia, Ph. Carval, Wettability versus roughness of engineering surfaces. Wear 271, 523–528 (2011). https://doi.org/10.1016/j.wear.2010.03.029

    Article  CAS  Google Scholar 

  28. B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944). https://doi.org/10.1039/TF9444000546

    Article  CAS  Google Scholar 

  29. M.J. Alam, D.C. Cameron, Preparation and characterization of TiO2 thin film by sol-gel method. J. Sol-Gel. Sci. Technol. 25, 137–145 (2002). https://doi.org/10.1023/A:1019912312654

    Article  CAS  Google Scholar 

  30. A. EI Mragui, Y. Logvina, L. Pinto da Silva, O. Zegaoui, J.C.G. Esteves da Silva, Synthesis of Fe- and co-doped TiO2 with improved photocatalytic activity under visible irradiation toward carbamazepine degradation. Material (2019). https://doi.org/10.3390/ma12233874

  31. Z. Ling, J. He, X. He, M. Liao, P. Liu, Z. Yang, J. Ye, P. Gao, Excellent passivation of silicon surfaces by thin films of electron-beam processed titanium dioxide. IEEE J Photovolt 7, 1551–1555 (2017). https://doi.org/10.1109/JPHOTOV.2017.2749975

    Article  Google Scholar 

  32. W. Zhang, Y. Wu, J. Wang, J. Liu, H. Lu, S. Zhai, Q. Zhong, S. Liu, W. Zhong, C. Huang, X. Yu, W. Zhang, Y. Chen, Adsorption of thallium(I) on rutile nano-titanium dioxide and environmental implications. PeerJ (2019). https://doi.org/10.7717/peerj.6820

  33. M.A. Mohamed, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Chapter 1- Fourier transform infrared (FTIR) spectroscopy. Membrane Characterization (2017). https://doi.org/10.1016/B978-0-444-63776-5.00001-2

  34. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005). https://doi.org/10.1143/JJAP.44.8269

    Article  CAS  Google Scholar 

  35. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Interf 2, 2385–2392 (2010). https://doi.org/10.1021/am100394x

    Article  CAS  Google Scholar 

  36. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16, 5754–5760 (2000). https://doi.org/10.1021/la991660o

    Article  CAS  Google Scholar 

  37. P. Pheiroijam, B. Choudhuri, V. Saranyan, P. Chinnamuthu, Synthesis of coaxial TiO2/In2O3 nanowire assembly using glancing angle deposition for wettability application. Appl. Nanosci. 9, 529–537 (2019). https://doi.org/10.1007/s13204-018-0936-0

    Article  CAS  Google Scholar 

  38. Z-G. Guo, F. Zhou, J-C. Hao, Y-M. Liang, W-M. Liu, W.T.S. Huck, “Stick and slide” ferrofluidic droplets on superhydrophobic surfaces. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2336729

  39. Y. Xiu, L. Zhu, D.W. Hess, C.P. Wong, Relationship between work of adhesion and contact angle hysteresis on superhydrophobic surfaces. J. Phys. Chem. C 112, 11403–11407 (2008). https://doi.org/10.1021/jp711571k

Download references

Acknowledgements

The authors would like to thank and acknowledge the SAIF, Indian Institute of Technology Bombay for providing the FEG-SEM and EDX facility, SAIF and North-Eastern Hill University Shillong for providing TEM and SAED facility, Department of Chemistry of National Institute of Technology Nagaland for FTIR facility, Department of Electronics and Communication of National Institute of Technology Nagaland, for water contact angle measurement, and TEQIP-III and NIT Nagaland for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulsamy Chinnamuthu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, K.K., Hazarika, M., Dhayal, S.S. et al. Synthesis of metallic surface plasmon-sensitized TiO2 nanowire for wettability application. J Mater Sci: Mater Electron 33, 8674–8682 (2022). https://doi.org/10.1007/s10854-021-06770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06770-0

Navigation