Skip to main content

Advertisement

Log in

Phase structures, loss, storage, damping, voice-absorption, and mechanical properties: nano-carbon black/BWZT/RTV

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Composites with damping–absorption performances and storage-loss behaviors were fabricated based on NCB (nano-carbon black), BWZT [Ba (W1/2Cu1/2)O3–Pb0.98Sr0.02 (Mg1/3Nb2/3)0.275(Ni1/3Nb2/3)0.10(Zr0.25Ti0.375)O3] and RTV (room temperature vulcanizing silicone rubber) employing three steps methods of ball-milling, three-roller milling and pressing. The effects of NCB on storage, loss and damping properties of composites were investigated by the method of DMTA and, absorption and mechanical performances are measured by the methods of standing wave tube and TG separately. The micro, chemical and phase structures of composites are characterized by SEM, XRD and IR. The results indicated that both doping of NCB and the combination of BWZT and RTV can be proposed to improve greatly the comprehensive performance of RTV matrixes and, there would be more excellent comprehensive properties in NCB/BWZT/RTV(NBR) with amount of 4–6 wt.% for NCB as d33 of 81 pC/N, storage modulus of 25003 MPa, loss modulus of 398 MPa, damping coefficient of 0.07–0.12, and absorption coefficients of 0.45–0.55 with the difference of frequency in the range of 400–1600 Hz. Lattice growth of BWZT is found showing strong dependences on contents of NCB, the absorption–damping performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.F.H. Wolff, V. Salikov, S. Antonyuk, S. Heinrich, G.A. Schneider, Novel, highly-filled ceramic-polymer composites synthesized by a spouted bed spray granulation process. Compos. Sci. Technol. 90, 154–159 (2014)

    Article  CAS  Google Scholar 

  2. S. Besset, M.N. Ichchou, Acoustic absorption material optimization in the mid-high frequency range. Appl. Acoust. 72, 632–638 (2019)

    Article  Google Scholar 

  3. C.H. Zhang, Z. Hua, G. Gao, S. Zhao, Y.D. Huang, Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites. Mater. Design 46, 503–510 (2019)

    Article  Google Scholar 

  4. S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Churn, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 27, 5462–5464 (2018)

    Article  Google Scholar 

  5. C.Y. Lee, M.J. Leamy, J.H. Nadler, Frequency band structure and absorption predictions for multi-periodic acoustic composites. J. Sound Vib. 329, 1809–1822 (2018)

    Article  Google Scholar 

  6. X. Liu, W.Y. Kuang, B.C. Guo, Preparation of rubber/graphene oxide composites with in-situ interfacial design. Polymer 56, 553–562 (2015)

    Article  CAS  Google Scholar 

  7. C.H. Zhang, Z. Hu, G. Gao, S. Zhao, Y.D. Huang, Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites. Mater. Design 46, 503–510 (2019)

    Article  Google Scholar 

  8. R. Rodriguez, E. Arteaga, D. Rangel, R. Salazar, S. Vargas, M. Estevez, Mechanical, chemical and acoustic properties of new hybrid ceramic-polymer varnishes for musical instruments. J. Non-Cryst. Solids 355, 132–140 (2019)

    Article  Google Scholar 

  9. Y. Yohachi, J. John, H. Yasuharu, I. Kazuhiro, Effects of ceramic nanopowder dopants on acoustic attenuation properties of silicone rubber lens for medical echo probe. Jpn. J. Appl. Phys. 46, 4784–4789 (2015)

    Article  Google Scholar 

  10. H. Mei, Y.Y. Sun, L.D. Zhang, H.Q. Wang, L.F. Cheng, Acoustic emission characterization of fracture toughness for fiber reinforced ceramic matrix composites. Mater. Sci. Eng. A 56, 372–376 (2017)

    Google Scholar 

  11. A. Bele, M. Cazacu, G. Stiubianu, S. Vlad, M. Ignat, Polydimethylsiloxane-barium titanate composites: preparation and evaluation of the morphology, moisture, thermal, mechanical and dielectric behavior. Compos. Part B 68, 237–245 (2015)

    Article  CAS  Google Scholar 

  12. B.C. Luo, X.H. Wang, Q.C. Zhao, L.T. Li, Synthesis, characterization and dielectric properties of surface functionalized ferroelectric ceramic/epoxy resin composites with high dielectric permittivity. Compos. Sci. Technol. 112, 1–7 (2015)

    Article  CAS  Google Scholar 

  13. C. Zhang, J.F. Sheng, C.A. Ma, M. Sumita, Electrical and damping behaviors of CPE/BaTiO3/VGCF composites. Mater. Lett. 59, 648–3651 (2015)

    Google Scholar 

  14. J. Cai, Y.H. Li, W.M. Cai, Study on acoustic absorption mechanism of piezoelectric and electrical conductive polymeric composite PZT/CB/PVC. J. Biomater. Sci. Polym. 23, 215–218 (2017)

    Google Scholar 

  15. H.H. Law, P.L. Rossiter, L.L. Koss, G.P. Simon, Mechanisms in damping of mechanical vibration by piezoelectric ceramic-polymer composite materials. J. Mater. Sci. 30, 2648–2655 (2015)

    Article  Google Scholar 

  16. N.N. Najib, Z.M. Ariff, A.A. Bakar, C.S. Sipaut, Correlation between the acoustic and dynamic mechanical properties of natural rubber foam: effect of foaming temperature. Mater. Design 32, 505–511 (2011)

    Article  CAS  Google Scholar 

  17. S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 436, 789–792 (2020)

    Google Scholar 

  18. R. Ginés, R. Libanori, A.R. Studart, A. Bergamini, M. Motavalli, P. Ermanni, Ceramic–polymer composites with improved dielectric and tribological properties for semi-active damping. Compos. Part B Eng. 72, 80–86 (2015)

    Article  Google Scholar 

  19. G. Gaunaurd, H. Uberall, Resonance theory of the effective properties of perfornate solids. J. Acoust. Soc. 71, 282–295 (2018)

    Article  Google Scholar 

  20. L.G. Yu, Z.H. Li, L.L. Ma, Theoretical analysis of underwater sound absorption of 0–3 type piezoelectric composite coatings. Acta Phys. Sin. Ched. 61, 240–301 (2018)

    Google Scholar 

  21. M. Hegde, U. Lafont, B. Norder, S.J. Picken, E.T. Samulski, M. Rubinstein, T. Dingemans, SWCNT induced crystallization in an amorphous all-aromatic poly(ether imide). Macromolecules 46, 1492–1503 (2013)

    Article  CAS  Google Scholar 

  22. M. Malagù, M. Goudarzi, A. Lyulin, E. Benvenuti, A. Simone, Diameter-dependent elastic properties of carbon nanotube-polymer composites: emergence of size effects from atomistic-scale simulations. Compos. Part B Eng. 131, 260–281 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51707153), Basic Research Program of Natural Science in Shaanxi Province (2019JM-166), the Shaanxi Province Key Laboratory of Science and Technology Innovation Project (2014SZS09-K04, 2014SZS09-Z01), the Natural Science, and Special fund of Education Department Foundation of Shaanxi Province of China (101-221206, 101-431116033) and Science Foundation of Xi’an University of Technology in China (2015TS002, 101-2560816012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanjuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jiao, H., Deng, Q. et al. Phase structures, loss, storage, damping, voice-absorption, and mechanical properties: nano-carbon black/BWZT/RTV. J Mater Sci: Mater Electron 33, 8665–8673 (2022). https://doi.org/10.1007/s10854-021-06769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06769-7

Navigation