Skip to main content
Log in

Influence of thermal annealing on the charge generation and transport in PM6-based non-fullerene solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To study the influence of thermal annealing on the charge generation and transport in PM6-based non-fullerene solar cells. Morphology, optical and electrochemical properties of active layers as well as electrical properties of polymer solar cells were studied. Furthermore, the photoelectric conversion processes of annealed and unannealed devices were also examined by means of time resolved spectroscopy. The results showed that thermal annealing had a weak influence on the dynamics of exciton states. Besides, annealed device is found to suppress bimolecular recombination owing to its higher charge carrier mobility in ordered donor and acceptor aggregation phases, which led to higher photocurrent and power conversion efficiency than unannealed photovoltaic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Kim, J.-H. Kim, T.E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, U. Jeong, T.-S. Kim, B.J. Kim, Flexible, highly effificient all-polymer solar cells. Nat. Commun. 6, 8547 (2015)

    Article  CAS  Google Scholar 

  2. W. Zheng, X. Luo, Y. Zhang, C. Ye, A. Qin, Y. Cao, L. Hou, Efficient low-cost all-flexible microcavity semitransparent polymer solar cells enabled by polymer flexible one-dimensional photonic crystals. ACS Appl. Mater. Inter. 12, 23190–23198 (2020)

    Article  CAS  Google Scholar 

  3. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    Article  CAS  Google Scholar 

  4. F.C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, E. Kold, Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol. Energy. Mater. Sol. Cells. 83, 293–300 (2004)

    Article  CAS  Google Scholar 

  5. X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, F. Zhang, Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible non-fullerene acceptors for minimizing energy loss. Adv. Energy Mater. 10, 2001404 (2020)

    Article  CAS  Google Scholar 

  6. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, 18% effificiency organic solar cells. Sci. Bull. 65, 272–275 (2020)

    Article  CAS  Google Scholar 

  7. J. Du, K. Hu, L. Meng, I. Angunawela, J. Zhang, S. Qin, A. Liebman-Pelaez, C. Zhu, Z. Zhang, H. Ade, Y. Li, High performance all-polymer solar cells with the polymer acceptor synthesized via a random ternary copolymerization strategy. Angew. Chem. Int. Ed. 59, 15181–15185 (2020)

    Article  CAS  Google Scholar 

  8. M.T. Dang, L. Hirsch, G. Wantz, J.D. Wuest, Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenylC61-butyric acid methyl ester system. Chem, Rev. 113, 3734–3765 (2013)

    Article  CAS  Google Scholar 

  9. S. Chen, J.R. Manders, S.-W. Tsang, F. So, Metal oxides for interface engineering in polymer solar cells. J. Mater. Chem. 22, 24202–24212 (2012)

    Article  CAS  Google Scholar 

  10. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commum. 4, 1446 (2012)

    Article  CAS  Google Scholar 

  11. F. Liu, Y. Gu, J.W. Jung, W.H. Jo, T.P. Russell, On the morphology of polymer-based photovoltaics. J Polym. Sci. Part B Polym. Phys. 50, 1018–1044 (2012)

    Article  CAS  Google Scholar 

  12. W. Zhang, R. Hu, X. Zeng, X. Su, Z. Chen, X. Zou, J. Peng, C. Zhang, A. Yartsev, Effect of post-thermal annealing on the performance and charge photogeneration dynamics of PffBT4T-2OD/PC71BM solar cells. Polymers 11, 408 (2019)

    Article  CAS  Google Scholar 

  13. G. Kocak, D. Gedefaw, M.R. Andersson, Optimizing polymer solar cells using non-halogenated solvent blends. Polymers 11, 544 (2019)

    Article  CAS  Google Scholar 

  14. A.R. Murad, A. Iraqi, S.B. Aziz, S.N. Abdullah, M.A. Brza, Conducting polymers for optoelectronic devices and organic solar cells: a review. Polymers 12, 2627 (2020)

    Article  CAS  Google Scholar 

  15. R. Hu, W. Zhang, P. Wang, Y. Qin, R. Liang, L.-M. Fu, J.-P. Zhang, X.C. Ai, Characterization and distribution of poly(3-hexylthiophene) phases in an annealed blend film. ChemPhysChem 15, 935–941 (2014)

    Article  CAS  Google Scholar 

  16. T.M. Clarke, J.R. Durrant, Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010)

    Article  CAS  Google Scholar 

  17. P. Kumar, C. Bilen, K. Feron, X. Zhou, W.J. Belcher, P.C. Dastoor, Enhanced regeneration of degraded polymer solar cells by thermal annealing. Appl. Phys. Lett. 104, 193905 (2014)

    Article  CAS  Google Scholar 

  18. W. Guo, H. Liu, J. Zhang, Z. Yang, Y. Niu, Y. Mi, Y. Liu, X. Song, Z. Wu, A small molecular acceptor based on dithienocyclopentaindenefluorene core for efficient fullerene-free polymer solar cells. Synth. Met. 272, 116667 (2021)

    Article  CAS  Google Scholar 

  19. R. Yu, H. Yao, Z. Chen, J. Xin, L. Hong, Y. Xu, Y. Zu, W. Ma, J. Hou, Enhanced π–π interactions of non-fullerene acceptors by volatilizable solid additives in efficient polymer solar cells. Adv. Mater. 31, 01900477 (2019)

    Article  CAS  Google Scholar 

  20. L.K. Jagadamma, M.T. Sajjad, V. Savikhin, M.F. Toney, I.D.W. Samuel, Correlating photovoltaic properties of a PTB7-Th:PC71BM blend to photophysics and microstructure as a function of thermal annealing. J. Mater. Chem. A 5, 14646–14657 (2017)

    Article  Google Scholar 

  21. Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32, 1908205 (2020)

    Article  CAS  Google Scholar 

  22. R. Hu, X. Su, H. Liu, Y. Liu, M.-M. Huo, W. Zhang, Recycled indium tin oxide transparent conductive electrode for polymer solar cells. J. Mater. Sci. 55, 11403–11410 (2020)

    Article  CAS  Google Scholar 

  23. S. Liang, S. Li, Y. Zhang, T. Li, H. Zhou, F. Jin, C. Sheng, G. Ni, J. Yuan, W. Ma, H. Zhao, Efficient hole transfer via delocalized excited state in small molecular acceptor: a comparative study on photodynamics of PM6:Y6 and PM6:ITIC organic photovoltaic blends. Adv. Funct. Mater. 31, 2102764 (2021)

    Article  CAS  Google Scholar 

  24. S. Li, L. Zhan, Y. Jin, G. Zhou, T.-K. Lau, R. Qin, M. Shi, C.-Z. Li, H. Zhu, X. Lu, F. Zhang, H. Chen, Asymmetric electron acceptors for high-efficiency and low-energy-loss organic photovoltaics. Adv. Mater. 32, 2001160 (2020)

    Article  CAS  Google Scholar 

  25. R. Wang, J. Yuan, R. Wang, G. Han, T. Huang, W. Huang, J. Xue, H.-C. Wang, C. Zhang, C. Zhu, P. Cheng, D. Meng, Y. Yi, K.-H. Wei, Y. Zou, Y. Yang, Rational tuning of molecular interaction and energy level alignment enables high-performance organic photovoltaics. Adv. Mater. 31, 1904215 (2019)

    Article  CAS  Google Scholar 

  26. M. Zhang, L. Zhu, G. Zhou, T. Hao, C. Qiu, Z. Zhao, Q. Hu, B.W. Larson, H. Zhu, Z. Ma, Z. Tang, W. Feng, Y. Zhang, T.P. Russell, F. Liu, Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 12, 309 (2021)

    Article  CAS  Google Scholar 

  27. L. Zhu, M. Zhang, G. Zhou, T. Hao, J. Xu, J. Wang, C. Qiu, N. Prine, J. Ali, W. Feng, X. Gu, Z. Ma, Z. Tang, H. Zhu, L. Ying, Y. Zhang, F. Liu, Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties. Adv. Energy Mater. 10, 1904234 (2020)

    Article  CAS  Google Scholar 

  28. S. Engmann, C.R. Singh, V. Turkovic, H. Hoppe, G. Gobsch, Direct correlation of the organic solar cell device performance to the in-depth distribution of highly ordered polymer domains in polymer/fullerene films. Adv. Energy Mater. 3, 1463–1472 (2013)

    Article  CAS  Google Scholar 

  29. M.S.G. Hamed, G.T. Mola, Copper sulphide as a mechanism to improve energy harvesting in thin film solar cells. J Alloy. Compds. 802, 252–258 (2019)

    Article  CAS  Google Scholar 

  30. K. Ma, C. An, T. Zhang, Q. Lv, S. Zhang, P. Zhou, J. Zhang, J. Hou, Study of photovoltaic performances for asymmetrical and symmetrical chlorinated thiophene-bridge-based conjugated polymers. J. Mater. Chem. C 8, 2301–2306 (2020)

    Article  CAS  Google Scholar 

  31. E.A.A. Arbab, B. Taleatu, G.T. Mola, Environmental stability of PTB7:PCBM bulk heterojunction solar cell. J Mod. Optic. 61, 1749–1753 (2014)

    Article  CAS  Google Scholar 

  32. M.-M. Huo, R. Liang, Y.-D. Xing, R. Hu, N.-J. Zhao, W. Zhang, L.-M. Fu, X.-C. Ai, J.-P. Zhang, J.H. Hou, Side-chain effects on the solution-phase conformations and charge photogeneration dynamics of low-bandgap copolymers. J. Chem. Phys. 139, 124904 (2013)

    Article  CAS  Google Scholar 

  33. Y. Wu, C. An, L. Shi, L. Yang, Y. Qin, N. Liang, C. He, Z. Wang, J. Hou, Crucial role of chlorinated thiophene orientation in conjugated polymers for photovoltaic devices. Angew. Chem. 57, 12911–12915 (2018)

    Article  CAS  Google Scholar 

  34. M.-M. Huo, R. Hu, Y.-D. Xing, Y.-C. Liu, X.-C. Ai, J.-P. Zhang, J.H. Hou, Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends. J. Chem. Phys. 140, 084903 (2014)

    Article  CAS  Google Scholar 

  35. W. Zhang, R. Hu, D. Li, M.-M. Huo, X.-C. Ai, J.-P. Zhang, Primary dynamics of exciton and charge photogeneration in solvent vapor annealed P3HT/PCBM films. J. Phys. Chem. C 116, 4298–4310 (2012)

    Article  CAS  Google Scholar 

  36. R. Hu, W. Zhang, L.-M. Fu, J.-P. Zhang, X.-C. Ai, Spectroelectrochemical characterization of anionic and cationic polarons in poly(3-hexylthiophene)/fullerene blend. Effects of morphology and interface. Synth. Met. 169, 41–47 (2013)

    Article  CAS  Google Scholar 

  37. S. Cook, L. Han, A. Furube, R. Katoh, Singlet annihilation in films of regioregular poly(3-hexylthiophene): estimates for singlet diffusion lengths and the correlation between singlet annihilation rates and spectral relaxation. J. Phys. Chem. C 114, 10962–10968 (2010)

    Article  CAS  Google Scholar 

  38. R.A. Street, Experimental test for geminate recombination applied to organic solar cells. Phys. Rev. B 82, 121301 (2010)

    Article  CAS  Google Scholar 

  39. G. Lakhwani, A. Rao, R.H. Friend, Bimolecular recombination in organic photovoltaics. Ann. Rev. Phys. Chem. 65, 557 (2014)

    Article  CAS  Google Scholar 

  40. X.M. Jiang, R. Österbacka, C.P. An, Z.V. Vardeny, Photoexcitations in regio-regular and regio-random polythiophene films. Synth. Met. 137, 1465–1468 (2003)

    Article  CAS  Google Scholar 

  41. R. Österbacka, C.P. An, X.M. Jiang, Z.V. Vardeny, Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 287, 839–842 (2000)

    Article  Google Scholar 

  42. Q. Shang, J. Yu, R. Hu, Z. Liu, J. Cheng, Y. Li, X. Shai, M.-M. Huo, X. Yang, L. Li, Enhanced charge transport in conventional polymer solar cells with a perovskite-type LaNiO3 Layer. ACS Appl. Mater. Inter. 12, 13051–13060 (2020)

    Article  CAS  Google Scholar 

  43. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang, X. Gong, Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy Environ. Sci. 5, 8208–8214 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (Grant No. 21903017), Major Cultivation Project of Chongqing University of Arts and Sciences (Grant No. P2020CL01), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant Nos. KJQN201901319, KJQN202001323), General program of Chongqing Natural Science Foundation (Grant Nos. cstc2019jcyj-msxmX0874, cstc2019jcyj-msxmX0411), Guangzhou Science and Technology Plan Project (Grant No. 202001010002), Young Talents Program of Guangzhou University (Grant No. RQ2020080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Hu or Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Liu, Y., Tian, L. et al. Influence of thermal annealing on the charge generation and transport in PM6-based non-fullerene solar cells. J Mater Sci: Mater Electron 32, 22879–22889 (2021). https://doi.org/10.1007/s10854-021-06765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06765-x

Navigation