Skip to main content
Log in

Phase transition mechanism and application of silicon-doped VO2 thin films to smart windows

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is important to examine the mechanism of the metal–insulator transition (MIT) of vanadium dioxide (VO2), which is of great significance, to understand the considerably related properties required for developing smart window applications. Here, we investigated the effect of the MIT on the thermochromic performance of VO2. We prepared Si-doped VO2 thin films and then used the sol–gel approach to deposit these thin films on Al2O3. X-ray diffraction (XRD) results showed that there was a metastable phase M2 in the VO2 film, which is classified as a Mott insulator owing to electron correlation between the undimerized V ions. Additionally, we found that 3% Si-doped VO2 thin films exhibited good thermochromic performance with a luminous transmittance (ΔTlum) of 54.7% and a sol modulation efficiency (ΔTsol) of 13.9%, which is superior to that of undoped VO2 films with ΔTlum of 37.2% and ΔTsol of 7.3%. This can be attributed to simultaneous control of the transmittance in the visible and near-infrared regions of Si-doped VO2 thin films. Therefore, this study provides a novel method of tuning the optical and electrical characteristics of VO2 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Zhang, I.S. Kim, L.J. Lauhon, Nano Lett. 11, 1443–1447 (2011)

    Article  CAS  Google Scholar 

  2. M.M. Qazilbash, M. Brehm, B.G. Chae, P.-C. Ho, G.O. Andreev, B.J. Kim, S.J. Yun, A.V. Balatsky, M.B. Maple, F. Keilmann, H.T. Kim, D.N. Basov, Science 318, 1750–1753 (2007)

    Article  CAS  Google Scholar 

  3. Z. Shao, X. Cao, Q. Zhang, S. Long, T. Chang, F. Xu, Y. Yang, P. Jin, Sol. Energy Mater. Sol. Cells. 200, 110044 (2019)

    Article  CAS  Google Scholar 

  4. R. Zhang, C. Yin, Q. Fu, C. Li, G. Qian, X. Chen, C. Lu, S. Yuan, X. Zhao, H. Tao, Ceram. Int. 44, 2809–2813 (2018)

    Article  CAS  Google Scholar 

  5. I. Top, R. Binions, C. Sol, I. Papakonstantinou, M. Holdynski, S. Gaiaschi, I. Abrahams, J. Mater. Chem. C 6, 12555–12565 (2018)

    Article  CAS  Google Scholar 

  6. J. Jin, D. Zhang, X. Qin, H.I.A. Imran, P. Fan, Energy Build. 202, 109345 (2019)

    Article  Google Scholar 

  7. C.M. Leroy, M.F. Achard, O. Babot, N. Steunou, P. Masse, J.L. Binet, N. Brun, R. Backov, Chem. Mater. 19, 3988–3999 (2017)

    Article  Google Scholar 

  8. T. Driscoll, H.T. Kim, B.G. Chae, B.J. Kim, Y.W. Lee, N.M. Jokerst, S. Palit, D.R. Smith, M.D. Ventra, D.N. Basov, Science 325, 1518 (2009)

    Article  CAS  Google Scholar 

  9. D. Lee, T. Min, G. Lee, J. Kim, S. Song, J. Lee, J. Bae, H. Kang, J. Lee, S. Park, J. Phys. Chem. Lett. 11, 9680–9688 (2020)

    Article  CAS  Google Scholar 

  10. A. Tselev, I.A. Luk’yanchuk, I.N. Ivanov, J.D. Budai, J.Z. Tischler, E. Strelcov, A. Kolmakov, V. Kalinin, Nano Lett. 10, 4409 (2010)

    Article  CAS  Google Scholar 

  11. J.P. Pouget, H. Launois, J.P. D’Haenens, P. Merenda, T.M. Rice, Phys. Rev. Lett. 13, 873 (1975)

    Article  Google Scholar 

  12. L. Dai, S. Chen, J. Liu, Y. Gao, J. Zhou, Z. Chen, Phys. Chem. Chem. Phys. 15(28), 11723–11729 (2013)

    Article  CAS  Google Scholar 

  13. C. Chen, Y. Zhao, X. Pan, V. Kuryatkov, A. Bernussi, M. Holtz, Z. Fan, J. Appl. Phys. 110, 023707 (2011)

    Article  Google Scholar 

  14. Y. Xu, W. Huang, Q. Shi, Y. Zhang, L. Song, Y. Zhang, J. Sol-Gel. Sci. Technol. 64(2), 493–499 (2012)

    Article  CAS  Google Scholar 

  15. M. Panagopoulou, E. Gagaoudakis, N. Boukos, E. Aperathitis, G. Kiriakidis, D. Tsoukalas, Sol. Energy Mater Sol. Cells 157, 1004–1010 (2016)

    Article  CAS  Google Scholar 

  16. J. Zheng, S. Bao, P. Jin, Nano Energy 11, 136–145 (2015)

    Article  CAS  Google Scholar 

  17. N.R. Mlyuka, G.A. Niklasson, C.G. Granqvist, Sol. Energy Mater. Sol. Cells 93(9), 1685–1687 (2009)

    Article  CAS  Google Scholar 

  18. C. Kang, C. Zhang, L. Zhang, S. Liang, C. Geng, G. Cao, H. Zong, M. Li, Appl. Surf. Sci. 463, 704–712 (2019)

    Article  CAS  Google Scholar 

  19. V.R. Kolbunov, A.I. Ivon, Y.A. Kunitskiy, I.M. Chernenko, Ceram. Int. 39(4), 3613–3620 (2013)

    Article  CAS  Google Scholar 

  20. F. Xu, X. Cao, J. Zhu, G. Sun, R. Li, S. Long, H. Luo, P. Jin, Mater. Lett. 222, 62–65 (2018)

    Article  CAS  Google Scholar 

  21. X. Wu, Z. Wu, Z. Liu, C. Ji, Z. Huang, Y. Su, J. Gou, J. Wang, Y. Jiang, Appl. Phys. Lett. 109, 111903 (2016)

    Article  Google Scholar 

  22. A. Krammer, O. Bouvard, A. Schüler, Energy Procedia 122, 745–750 (2017)

    Article  CAS  Google Scholar 

  23. X. Wu, Z. Wu, H. Zhang, R. Niu, Q. He, C. Ji, J. Wang, Y. Jiang, Surf. Coat. Technol. 276, 248–253 (2015)

    Article  CAS  Google Scholar 

  24. J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, C. Cao, Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011)

    Article  CAS  Google Scholar 

  25. M. Wang, L. Fan, J. Bian, D. Zhang, H. Liu, H. Sun, Y. Luo, J. Mater. Sci. Mater. Electron. 28, 11046–11052 (2017)

    Article  CAS  Google Scholar 

  26. M.M. Fadlelmula, E.C. Sürmeli, M. Ramezani, T.S. Kasırga, Nano Lett. 17, 1762–1767 (2017)

    Article  CAS  Google Scholar 

  27. N. Shen, S. Chen, Z. Chen, X. Liu, C. Cao, B. Dong, H. Luo, J. Liu, Y. Gao, J. Mater. Chem. A 2, 15087 (2014)

    Article  CAS  Google Scholar 

  28. S. Zhang, I.S. Kim, L.J. Lauhon, Nano Lett. 11(4), 1443–1447 (2011)

    Article  CAS  Google Scholar 

  29. R. Zhang, H. Jin, D. Guo, J. Zhang, Z. Zhao, Y. Zhao, J. Li, Ceram. Int. 42, 18764–18770 (2016)

    Article  CAS  Google Scholar 

  30. K. Huang, Y. Meng, X. Xu, P. Chen, A. Lu, H. Li, C. Wang, X. Chen, J. Phys. Condens. Matter 29, 355402 (2017)

    Article  Google Scholar 

  31. J. Jian, A. Chen, Y. Chen, X. Zhang, H. Wang, Appl. Phys. Lett. 111, 153102 (2017)

    Article  Google Scholar 

  32. Z. Zou, Z. Zhang, J. Xu, Z. Yu, M. Cheng, R. Xiong, Z. Lu, Y. Liu, J. Shi, J. Alloy. Comp. 806, 310–315 (2019)

    Article  CAS  Google Scholar 

  33. N.F. Mott, Rev. Mod. Phys. 40(4), 677 (1968)

    Article  CAS  Google Scholar 

  34. B.J. Kim, Y.W. Lee, S. Choi, J.W. Lim, S.J. Yun, H.T. Kim, Phys. Rev. B 77, 235401 (2008)

    Article  Google Scholar 

  35. G. Stefanovich, A. Pergament, D. Stefanovich, J. Phys.: Condens. Matter. 12, 8837 (2000)

    CAS  Google Scholar 

  36. Y. Wu, Sci. Rep. 5, 9328 (2015)

    Article  CAS  Google Scholar 

  37. Y. Sun, S. Jiang, W. Bi, R. Long, X. Tan, C. Wu, S. Wei, Y. Xie, Nanoscale 3, 4394 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China 12074291, 11804211, 11905119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Zhang, Z., Xu, J. et al. Phase transition mechanism and application of silicon-doped VO2 thin films to smart windows. J Mater Sci: Mater Electron 32, 23825–23833 (2021). https://doi.org/10.1007/s10854-021-06752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06752-2

Navigation