Skip to main content
Log in

A comparative study on visible-light-driven photocatalytic activity of CdO nanowires and g-C3N4/CdO hybrid nanostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we synthesized the visible-light-driven photocatalytic activity of CdO nanowires and g-C3N4/CdO hybrid nanostructure by the hydrothermal method. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectrometry, and UV–Vis diffuse reflectance spectroscopy studies were carried out to compare the structural, morphological, and optical properties of CdO nanowires and g-C3N4/CdO hybrid nanostructure. Also, we investigated how CdO nanowires and g-C3N4/CdO hybrid nanostructure function as photocatalysts in the photocatalytic oxidation of RhB under visible light illumination, which revealed that g-C3N4/CdO hybrid nanostructure exhibits better photocatalytic oxidation on RhB than CdO nanowires with the first-order degradation kinetics. The prepared g-C3N4/CdO hybrid nanostructure can provide hybridized conduction band or valence band, which facilitates better charge transport and reduces recombination electron-hole charge carriers leading to higher photocatalytic performance. Hence, making hybrid nanostructures such as g-C3N4/CdO can be a potential approach to develop effective photocatalysts for treating effluents discharged from textile and dyeing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data can be available upon reasonable request to the corresponding author.

References

  1. K. Kannan, D. Radhika, K. K.Sadasivuni, K.R. Reddy, A.V. Raghu, Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv. Colloid Interface Sci. 281, 102178 (2020)

    Article  CAS  Google Scholar 

  2. A. Rehman, M. Aadil, S. Zulfiqar, P.O. Agboola, I. Shakir, M.F.A. Aboud, S. Haider, M.F. Warsi, Fabrication of binary metal doped CuO nanocatalyst and their application for the industrial effluents treatment. Ceram. Int. 47, 5929–5937 (2021)

    Article  Google Scholar 

  3. N.Y. Donkadokula, A.K. Kola, I. Naz, D. Saroj, A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 19, 543–560 (2020)

    Article  CAS  Google Scholar 

  4. R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manage. 85, 956–964 (2007)

    Article  CAS  Google Scholar 

  5. M.S.S. Danish, L.L. Estrella, I.M.A. Alemaida, A. Lisin, N. Moiseev, M. Ahmadi, M. Nazari, M. Wali, H. Zaheb, T. Senjyu, Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals 11, 80 (2021)

    Article  CAS  Google Scholar 

  6. K. Maschke, U. Rossler, The electronic structure of CdO I. The energy-band structure (APW method). Phys. Stat. Sol. (b) 28, 577–581 (1968)

    Article  CAS  Google Scholar 

  7. S.K.V. Farahani, V. Muñoz-Sanjosé, J. Zúñiga-Pérez, C.F. McConville, T.D. Veal, Temperature dependence of the direct bandgap and transport properties of CdO. Appl. Phy. Lett. 102, 022102 (2013)

    Article  Google Scholar 

  8. G. Yao, X. An, H. Lei, Y, Fu, W, Wu, Electronic and Optical Properties of Rocksalt CdO: A first-Principles Density-Functional Theory Study,  Mod.  Num. Sim. Mater. Sci. 3, 16–19 (2013)

    Google Scholar 

  9. J.E. Jaffe, R. Pandey, A.B. Kunz, Electronic structure of the rocksalt-structure semiconductors ZnO and CdO. Phy. Rev. B 43, 14030 (1991)

    Article  CAS  Google Scholar 

  10. V. Kumar, D.K. Sharma, K.K. Sharma, S. Agrawal, M.K. Bansal, D.K. Dwivedi, Structural, optical and electrical characterization of nanocrystalline CdO films for device applications. Optik 127, 4254–4257 (2016)

    Article  CAS  Google Scholar 

  11. F. Yakuphanoglu, Nanocluster n-CdO thin film by sol–gel for solar cell applications. Appl. Surf. Sci. 257, 1413–1419 (2010)

    Article  CAS  Google Scholar 

  12. T. Krishnakumar, R. Jayaprakash, T. Prakash, D. Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, G. Neri, CdO-based nanostructures as novel CO2 gas sensors. Nanotechnology 22, 325501 (2011)

    Article  CAS  Google Scholar 

  13. A. Tadjarodi, M. Imani, H. Kerdari, Experimental design to optimize the synthesis of CdO cauliflower-like nanostructure and high performance in photodegradation of toxic azo dyes. Mater. Res. Bull. 48, 935–942 (2013)

    Article  CAS  Google Scholar 

  14. M. Ismael, A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 846, 156446 (2020)

    Article  CAS  Google Scholar 

  15. B. Xu, M.B. Ahmed, J.L. Zhou, A. Altaee, G. Xu, M. Wu, Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: progress, limitations and future directions. Sci. Total Environ. 633, 546–559 (2018)

    Article  CAS  Google Scholar 

  16. S.S. Khan, Enhancement of visible light photocatalytic activity of CdO modified ZnO nanohybrid particles. J. Photochem. Photobio. B 142, 1–7 (2015)

    Article  Google Scholar 

  17. C. Xu, P.R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis. Chem. Soc. Rev. 48, 3868–3902 (2019)

    Article  CAS  Google Scholar 

  18. F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, Z. Cai, Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. 9, 2489 (2019)

    Article  CAS  Google Scholar 

  19. W. Shi, S. Songa, H. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 42, 5714–5743 (2013)

    Article  CAS  Google Scholar 

  20. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. J. Mater. Sci.: Mater. Electron 28, 11420–11429 (2017)

    CAS  Google Scholar 

  21. I. Papailias, N. Todorova, T. Giannakopoulou, N. Ioannidis, N. Boukos, C.P. Athanasekou, D. Dimotikali, C. Trapalis, Chemical vs thermal exfoliation of gC3N4 for NOx removal under visible light irradiation. Appl. Catal. B Environ. 239, 16–26 (2018)

    Article  CAS  Google Scholar 

  22. W.K. Darkwah, Y. Ao, Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications. Nanoscale Res. Lett. 13, 388–402 (2018)

    Article  Google Scholar 

  23. D.F. Li, W.Q. Huang, L.R. Zou, A. Pan, G.F. Huang, Mesoporous g-Câ3Nâ4„ nanosheets: synthesis, superior adsorption capacity and photocatalytic activity. J. Nanosci. Nanotechnol. 18, 5502 (2018)

    Article  CAS  Google Scholar 

  24. J. Duraimurugan, G.S. Kumar, P. Maadeswaran, S. Shanavas, P.M. Anbarasan, V. Vasudevan, Structural, optical and photocatlytic properties of zinc oxide nanoparticles obtained by simple plant extract mediated synthesis. J. Mater. Sci.: Mater. Electron 30, 1927–1935 (2019)

    CAS  Google Scholar 

  25. P.S. Kumar, M. Selvakumar, S.G. Babu, S. Karuthapandian, S. Chattopadhyay, CdO nanospheres: facile synthesis and bandgap modification for the superior photocatalytic activity. Mater. Lett. 151, 45–48 (2015)

    Article  Google Scholar 

  26. T.D. Munusamy, C.S. Yee, M.R. Khan, Construction of hybrid g-C3N4/CdO nanocomposite with improved photodegradation activity of RhB dye under visible light irradiation. Adv. Powder Technol. 31, 2921–2931 (2020)

    Article  CAS  Google Scholar 

  27. C. Suryanarayana, M.G. Norton, X-Ray Diffraction a Practical Approach (Springer, Boston, 1998)

    Google Scholar 

  28. T. Ghoshal, S. Kar, S. Chaudhuri, Synthesis of nano and micro crystals of Cd(OH)2 and CdO in the shape of hexagonal sheets and rods. Appl. Surf. Sci. 253, 7578–7584 (2007)

    Article  CAS  Google Scholar 

  29. Z. Guo, M. Li, J. Liu, Highly porous CdO nanowires: preparation based on hydroxy-and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties. Nanotechnology 19, 245611 (2008)

    Article  Google Scholar 

  30. D.J. Martin, K. Qiu, S.A. Shevlin, Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 53, 9240–9245 (2014)

    Article  CAS  Google Scholar 

  31. J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Eden Peairie, 1992)

    Google Scholar 

  32. Y. Yang, J. Chen, Z. Mao, N. An, D. Wang, B.D. Fahlman, Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis. RSC Adv. 7, 2333–2341 (2017)

    Article  CAS  Google Scholar 

  33. T. Prakash, G. Neri, A. Bonavita, E. Ranjith Kumar, K. Gnanamoorthi, Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method. J. Mater. Sci.: Mater. Electron 26, 4913–4921 (2015)

    CAS  Google Scholar 

  34. A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, J.S. Aananda, Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155–1161 (2017)

    Article  CAS  Google Scholar 

  35. M. Ismael, The photocatalytic performance of the ZnO/g-C3N4 composite photocatalyst, toward degradation of organic pollutants and its inactivity toward hydrogen evolution: The influence of light irradiation and charge transfer. Chem. Phy. Lett. 739, 136992 (2020)

    Article  CAS  Google Scholar 

  36. M. Aleksandrzak, D. Baranowska, T. Kedzierski, K. Sielicki, S. Zhang, M. Biegun, E. Mijowska, Superior synergy of g-C3N4/Cd compounds and Al-MOF-derived nanoporous carbon for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 257, 117906 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. P. Vijayakumar or P. Maadeswaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, T.P., Benoy, M.D., Duraimurugan, J. et al. A comparative study on visible-light-driven photocatalytic activity of CdO nanowires and g-C3N4/CdO hybrid nanostructure. J Mater Sci: Mater Electron 33, 8635–8643 (2022). https://doi.org/10.1007/s10854-021-06695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06695-8

Navigation