Skip to main content
Log in

Effect of Sn-doping on the structural, optical, dielectric and magnetic properties of ZnO nanoparticles for spintronics applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper has focused on investigating the structure, dielectric, and magnetic characteristic of Sn-ZnO nanopowder with Sn (x = 0%, 2%, 4%, and 6%) synthesized by the co-precipitation technique. Our objective was to obtain the material of low dielectric constant, high electrical conductivity, and magnetism. X-ray diffraction confirmed the Sn-ZnO nanoparticles have a ZnO-like hexagonal structure. It is found that the dielectric constant, dielectric loss, and a.c conductivity of doped nanoparticles were frequency-dependent. The dielectric constant of all the doped samples were increased by the increase in the Sn-doped concentration, while the decrease in frequency increased the dielectric constant and loss. Moreover, the a.c conductivity was increased by the increase in Sn concentration and frequency. Ferromagnetism was observed in ZnO doped with 4% and 6% Sn at room temperature. In addition, a robust magnetic hysteresis loop was observed for doped with 4% Sn to ZnO nanopowder at 300 K with coercive field (Hc) ~ 49 Oe and remnant magnetization (Mr) ~ 0.189 emu/g. The loss of magnetism at higher Sn- ZnO nanopowder was assigned to the suppression of ferromagnetism through paramagnetic interactions. The experimental results showed that 4% Sn- ZnO became ferromagnetic, its lattice shrink and size decreased, which is important for excellent magnetic properties and electrical conductivity. These types of materials have a large number of applications in high-frequency devices, ultrahigh dielectric material gas sensors, spintronics, and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  CAS  Google Scholar 

  2. T. Dietl, Nat. Mater. 9, 965 (2010)

    Article  CAS  Google Scholar 

  3. T. Dietl, O.H. Ohno, A.F. Matsukura, J. Cibert, E.D. Ferrand, Science 287, 1019 (2000)

    Article  CAS  Google Scholar 

  4. I. Žutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  CAS  Google Scholar 

  5. H. Ohno, Science 281, 951 (1998)

    Article  CAS  Google Scholar 

  6. H. Ohno, N.A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, Appl. Phys. Lett. 69, 363 (1996)

    Article  CAS  Google Scholar 

  7. L. Das, F. Rubbi, K. Habib, N. Aslfattahi, R. Saidur, B.B. Saha, S. Algarni, K. Irshad, T. Alqahtan, J. Mol. Liq. 2021, 116563 (2021)

    Article  CAS  Google Scholar 

  8. M. Saleem, K. Irshad, S. Ur Rehman, M.S. Javed, M.A. Hasan, H.M. Ali, A. Ali, M.Z. Malik, S. Islam, Nanomaterials 11, 702 (2021)

    Article  CAS  Google Scholar 

  9. S. Hussain, M.M. Alam, M. Imran, N. Zouli, A. Aziz, K. Irshad, M. Haider, A. Khan, Mater. Lett. 274, 128043 (2020)

    Article  CAS  Google Scholar 

  10. B. Bakthavatchalam, K. Habib, R. Saidur, B.B. Saha, K. Irshad, J. Mol. Liq. 305, 112787 (2020)

    Article  CAS  Google Scholar 

  11. L. Sun, F. Yan, H. Zhang, J. Wang, G. Wang, Y. Zeng, J. Li, Appl. Surf. Sci. 255, 7451 (2009)

    Article  CAS  Google Scholar 

  12. G. Husnain, F. Tao, S.-D. Yao, Phys. B 405, 2340 (2010)

    Article  CAS  Google Scholar 

  13. Z. Lu, H.-S. Hsu, Y. Tzeng, J.-C.-A. Huang, Appl. Phys. Lett. 94, 152507 (2009)

    Article  CAS  Google Scholar 

  14. N.G. Szwacki, J. Majewski, T. Dietl, Phys. Rev. B 83, 184417 (2011)

    Article  CAS  Google Scholar 

  15. Y. Peng, D. Huo, H. He, Y. Li, L. Li, H. Wang, Z. Qian, J. Magn. Magn. Mater. 324, 690 (2012)

    Article  CAS  Google Scholar 

  16. L. Shen, R. Wu, H. Pan, G. Peng, M. Yang, Z. Sha, Y. Feng, Phys. Rev. B 78, 073306 (2008)

    Article  CAS  Google Scholar 

  17. L.-B. Shi, Y. Fei, J. Magn. Magn. Mater. 324, 3105 (2012)

    Article  CAS  Google Scholar 

  18. C.-W. Zhang, P.-J. Wang, P. Li, Solid State Sci. 13, 480 (2011)

    Article  CAS  Google Scholar 

  19. Y.-L. Zhang, X.-M. Tao, M.-Q. Tan, J. Magn. Magn. Mater. 325, 7 (2013)

    Article  CAS  Google Scholar 

  20. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000)

    Article  CAS  Google Scholar 

  21. Y. Lin, D. Jiang, F. Lin, W. Shi, X. Ma, J. Alloy. Compd. 436, 30 (2007)

    Article  CAS  Google Scholar 

  22. P.K. Sharma, R.K. Dutta, A.C. Pandey, S. Layek, H. Verma, J. Magn. Magn. Mater. 321, 2587 (2009)

    Article  CAS  Google Scholar 

  23. S.Y. Bae, C.W. Na, J.H. Kang, J. Park, J. Phys. Chem. B 109, 2526 (2005)

    Article  CAS  Google Scholar 

  24. J. Wen, J. Lao, D. Wang, T. Kyaw, Y. Foo, Z. Ren, Chem. Phys. Lett. 372, 717 (2003)

    Article  CAS  Google Scholar 

  25. S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, V.S. von Molnár, M. Roukes, A.Y. Chtchelkanova, D. Treger, Science 294, 1488 (2001)

    Article  CAS  Google Scholar 

  26. A. Fert, Angew. Chem. Int. Ed. 47, 5956 (2008)

    Article  CAS  Google Scholar 

  27. G.Y. Ahn, S.-I. Park, C.S. Kim, J. Magn. Magn. Mater. 303, e329 (2006)

    Article  CAS  Google Scholar 

  28. S.S. Abdullahi, Y. Köseoğlu, S. Güner, S. Kazan, B. Kocaman, C.E. Ndikilar, Superlatt. Microstruct. 83, 342 (2015)

    Article  CAS  Google Scholar 

  29. R. Khan, S. Fashu, J. Mater. Sci. 28, 4333 (2017)

    CAS  Google Scholar 

  30. Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Nanoscale Res. Lett. 7, 1 (2012)

    Article  CAS  Google Scholar 

  31. C. Ghosh, S. Malkhandi, M. Mitra, K. Chattopadhyay, J. Phys. D 41, 245113 (2008)

    Article  CAS  Google Scholar 

  32. P. Lommens, K. Lambert, F. Loncke, D. De Muynck, T. Balkan, F. Vanhaecke, H. Vrielinck, F. Callens, Z. Hens, ChemPhysChem 9, 484 (2008)

    Article  CAS  Google Scholar 

  33. J. Beltrán, J. Osorio, C. Barrero, C.B. Hanna, A. Punnoose, J. Appl. Phys. 113, 17C308 (2013)

    Article  CAS  Google Scholar 

  34. Y. Jiang, W. Yan, Z. Sun, Q. Liu, Z. Pan, T. Yao, Y. Li, Z. Qi, G. Zhang, P. Xu, J. Phys. 190, 012100 (2009)

    Google Scholar 

  35. G. Lawes, A. Risbud, A. Ramirez, R. Seshadri, Phys. Rev. B 71, 045201 (2005)

    Article  CAS  Google Scholar 

  36. M. Ajili, M. Castagné, N.K. Turki, Superlatt. Microstruct. 53, 213 (2013)

    Article  CAS  Google Scholar 

  37. A. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  38. R. Noonuruk, W. Mekprasart, T. Supparattanasamai, T. Kanyapan, W. Techitdheera, W. Pecharapa, Integr. Ferroelectr. 156, 58 (2014)

    Article  CAS  Google Scholar 

  39. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991)

    Article  CAS  Google Scholar 

  40. N. Siva, D. Sakthi, S. Ragupathy, V. Arun, N. Kannadasan, Mater. Sci. Eng. B 253, 114497 (2020)

    Article  CAS  Google Scholar 

  41. S.U. Awan, S. Hasanain, G. Hassnain Jaffari, D.H. Anjum, U.S. Qurashi, J. Appl. Phys. 116, 083510 (2014)

    Article  CAS  Google Scholar 

  42. A. Ali, G. Rahman, T. Ali, M. Nadeem, S. Hasanain, M. Sultan, Phys. E. 103, 329 (2018)

    Article  CAS  Google Scholar 

  43. H. Gupta, J. Singh, R. Dutt, S. Ojha, S. Kar, R. Kumar, V. Reddy, F. Singh, Phys. Chem. Chem. Phys. 21, 15019 (2019)

    Article  CAS  Google Scholar 

  44. K.E. Knutsen, A. Galeckas, A. Zubiaga, F. Tuomisto, G.C. Farlow, B.G. Svensson, A.Y. Kuznetsov, Phys. Rev. B 86, 121203 (2012)

    Article  CAS  Google Scholar 

  45. A. Galdámez-Martinez, G. Santana, F. Güell, P.R. Martínez-Alanis, A. Dutt, Nanomaterials 10, 857 (2020)

    Article  CAS  Google Scholar 

  46. R. Raji, K. Gopchandran, J. Sci. 2, 51 (2017)

    Google Scholar 

  47. R. Khokhra, B. Bharti, H.-N. Lee, R. Kumar, Sci. Rep. 7, 1 (2017)

    Article  CAS  Google Scholar 

  48. V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715 (2014)

    Article  CAS  Google Scholar 

  49. D. Behera, B. Acharya, J. Lumin. 128, 1577 (2008)

    Article  CAS  Google Scholar 

  50. J. Lyons, J. Varley, D. Steiauf, A. Janotti, C. Van de Walle, J. Appl. Phys. 122, 035704 (2017)

    Article  CAS  Google Scholar 

  51. R. Khan, C.I.L. de Araujo, T. Khan, A. Khan, B. Ullah, S. Fashu, J. Mater. Sci. 29, 9785 (2018)

    CAS  Google Scholar 

  52. M. Zubair, A. Khan, T. Hua, N. Ilyas, S. Fashu, A.M. Afzal, M.A. Safeen, R. Khan, J. Mater. Sci. 32, 9463 (2021)

    Google Scholar 

  53. M.A. Dar, K.M. Batoo, V. Verma, W. Siddiqui, R. Kotnala, J. Alloy. Compd. 493, 553 (2010)

    Article  CAS  Google Scholar 

  54. T. Velayutham, W.H. Abd Majid, W. Gan, A. Khorsand Zak, S. Gan, J. Appl. Phys. 112, 054106 (2012)

    Article  CAS  Google Scholar 

  55. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, M. Chaman, A. Azam, A. Naqvi, Mater. Res. Bull. 47, 4161 (2012)

    Article  CAS  Google Scholar 

  56. R. Ondo-Ndong, G. Ferblantier, F. Pascal-Delannoy, A. Boyer, A. Foucaran, Microelectron. J. 34, 1087 (2003)

    Article  CAS  Google Scholar 

  57. R. Dosoudil, E. Ušák, V. Olah, J. Electr. Eng. 61, 111 (2010)

    Google Scholar 

  58. W.S. Zaengl, IEEE Electr. Insul. Mag. 19, 5 (2003)

    Article  Google Scholar 

  59. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, J. Mater. Chem. C 4, 9738 (2016)

    Article  CAS  Google Scholar 

  60. H. Zhang, D. Wang, C. Hu, X. Kang, H. Liu, Sens. Actuators B Chem. 184, 288 (2013)

    Article  CAS  Google Scholar 

  61. E. López-Ponce, J.L. Costa-Krämer, M. Martín-González, F. Briones, J. Fernández, A. Caballero, M. Villegas, J. De Frutos, J. Physica Status Solidi A 203, 1383 (2006)

    Article  CAS  Google Scholar 

  62. K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, J. Appl. Phys. 110, 083901 (2011)

    Article  CAS  Google Scholar 

  63. S.J. Jeyakumar, J. Vasudevan, B. Arunkumar, M. Jothibas, A. Rajeswari, R. Sathiskumar, A. Muthuvel, Mater. Today (2020)

Download references

Acknowledgements

The authors gratefully acknowledge the Deanship of Scientific Research, King Khalid University (KKU), Abha-Asir, Kingdom of Saudi Arabia for funding this research work under the Grant Number R.G.P.2/89/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwali Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Tirth, V., Ali, A. et al. Effect of Sn-doping on the structural, optical, dielectric and magnetic properties of ZnO nanoparticles for spintronics applications. J Mater Sci: Mater Electron 32, 21631–21642 (2021). https://doi.org/10.1007/s10854-021-06675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06675-y

Navigation