Skip to main content

Advertisement

Log in

Activated carbon from agave wastes (agave tequilana) for supercapacitors via potentiostatic floating test

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To prepare an efficient supercapacitor, an activated carbon from agave wastes was prepared and their electrochemical performance was evaluated as a novel electrode for supercapacitor. The carbon was prepared by two thermal pyrolysis processes under nitrogen atmosphere. The first pyrolysis was achieved at 500 °C until the charring of the bagasse; in the second pyrolysis step, the char was impregnated with different mass ratios of KOH (1:2–1:4) and thermally treated at 800 or 900 °C, for 1 h under N2 flow. The textural analysis showed that the activated carbon had a specific surface area of 1462 m2 g−1 and depicted a type I isotherm (IUPAC) characteristic of a microporous carbon. Raman spectroscopy and XRD measurements confirm that the activated carbon contains a small graphitization degree and a disordered structure. The electrochemical study of the symmetric carbon supercapacitor was carried out in 1 M Li2SO4 solution as the electrolyte. The electrochemical performance of the coin cell supercapacitor was evaluated under an accelerated aging floating test consisting of potentiostatic steps at different voltages (1.5, 1.6 and 1.8 V) for 10 h followed by galvanostatic charge/discharge sequences, and the overall procedure summarized a floating time up to 200 h. The highest capacitance was observed at a floating voltage of 1.5 V, with a large initial specific capacitance of 297 F g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The research group does not present any problems with the disposal of data and material.

References

  1. C. Nieto-Delgado, M. Terrones, J. Rangel-Méndez, Biomass Bioenerg. 35(1), 103–112 (2011)

    Article  CAS  Google Scholar 

  2. B.E. Conway, Electrochem. Soc. 138, 1539 (1991)

    Article  CAS  Google Scholar 

  3. P. Kleszyk, P. Ratajczak, P. Skowron, J. Jagiello, Q. Abbas, E. Frąckowiak, F. Béguin, Carbon 81, 148–157 (2015)

    Article  CAS  Google Scholar 

  4. D. Salinas-Torres, S. Shiraishi, E. Morallón, D. Cazorla-Amorós, Carbon 82, 205–213 (2015)

    Article  CAS  Google Scholar 

  5. S. Vaquero, J. Palma, M. Anderson, R. Marcilla, J. Electrochem. Soc. 160(11), A2064–A2069 (2013)

    Article  CAS  Google Scholar 

  6. P. Kalyani, A. Anitha, Int. J. Hydrog. Ener 38(10), 4034–4045 (2013)

    Article  CAS  Google Scholar 

  7. D. Weingarth, A. Foelske-Schmitz, R. Kötz, J. Power Sour. 225, 84–88 (2013)

    Article  CAS  Google Scholar 

  8. E. Schröder, K. Thomauske, B. Oechsler, S. Herberger, Biomass Bioenergy, 333–356 (2011)

  9. J. Chae, G. Chen, Electrochim. Acta 86, 248–254 (2012)

    Article  CAS  Google Scholar 

  10. P. Przygocki, Q. Abbas, F. Béguin, Electrochim. Acta. 269, 640–648 (2018)

    Article  CAS  Google Scholar 

  11. J. Ortiz-Bustos, S. Real, M. Cruz, J. Santos-Peña, Microporous Mesoporous Mater. 242, 221–230 (2017)

    Article  CAS  Google Scholar 

  12. A. Bello, F. Barzegar, M. Madito, D. Momodu, A. Khaleed, A. Masikhwa, N. Manyala, Electrochim. Acta. 213, 107–114 (2016)

    Article  CAS  Google Scholar 

  13. A. Abioye, F. Ani, Renew. Sustain. Energy Rev. 52, 1282–1293 (2015)

    Article  CAS  Google Scholar 

  14. A. Laheäär, P. Przygocki, Q. Abbas, F. Béguin, Electrochem. Commun. 60, 21–25 (2015)

    Article  Google Scholar 

  15. X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S. Qiao, G. Lu, Biores. Technol. 102(2), 1118–1123 (2011)

    Article  CAS  Google Scholar 

  16. V. Obreja, Phys E 40(7), 2596–2605 (2008)

    Article  CAS  Google Scholar 

  17. G. Qiang, Ph.D. Thesis. Université d´Orléans (2013)

  18. S. Moganty, R. Baltus, D. Roy, Chem. Phys. Lett. 483(1–3), 90–94 (2009)

    Article  CAS  Google Scholar 

  19. X. Gao, W. Xing, J. Zhou, G. Wang, S. Zhuo, Z. Liu, Z. Yan, Electrochim. Acta 133, 459–466 (2014)

    Article  CAS  Google Scholar 

  20. L. Timperman, H. Galiano, D. Lemordant, M. Anouti, Electrochem. Commun. 13(10), 1112–1115 (2011)

    Article  CAS  Google Scholar 

  21. M. Galiński, A. Lewandowski, I. Stępniak, Electrochim. Acta 51(26), 5567–5580 (2006)

    Article  Google Scholar 

  22. N. Shimodaira, A. Masui, J. Appl. Phys. 92(2), 902–909 (2002)

    Article  CAS  Google Scholar 

  23. H. Wang, H. Chung, W. Liu, IEEE Trans. Power Electron. 29(3), 1163–1175 (2013)

    Article  Google Scholar 

  24. M. Thommes, K. Kaneko, A. Neimark, J. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. Sing, Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    Article  CAS  Google Scholar 

  25. D. Momodu, M. Madito, F. Barzegar, A. Bello, A. Khaleed, O. Olaniyan, N. Manyala, J. Solid State Electrochem. 21(3), 859–872 (2017)

    Article  CAS  Google Scholar 

  26. H. Ohno, Electrochemical ionic liquids (2005)

  27. A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marín, C. Moreno-Castilla, Bioresour. Technol. 111, 185–190 (2012)

    Article  CAS  Google Scholar 

  28. M. Lazzari, F. Soavi, M. Mastragostino, J. Power Sour. 178(1), 490–496 (2008)

    Article  CAS  Google Scholar 

  29. H. Ibrahim, A. Ilinca, J. Perron, Renew. Sustain. Energy Rev. 12(5), 1221–1250 (2008)

    Article  CAS  Google Scholar 

  30. A. Jain, R. Balasubramanian, M. Srinivasan, Chem. Eng. J. 283, 789–805 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank CONACYT (Consejo Nacional de Ciencia y Tecnología) and PAICYT-UANL (Programa de Apoyo para la Investigación Científica de la Universidad Autónoma de Nuevo León) for the financial research support to this project. IKRH would like to thank CONACYT for PhD scholarship grant.

Funding

Consejo Nacional de Ciencia y Tecnología (CONACYT) and Programa de Apoyo a la Investigación Científica y Tecnológica, Universidad Autónoma de Nuevo León (PAICYT-UANL).

Author information

Authors and Affiliations

Authors

Contributions

IkRH: Formal Analysis, Research, Writing—Original draft, and Writing—Review & Editing. LCTG: Conceptualization, Methodology, Writing—Review & Editing, Validation, Supervision, Project Administration, Funding Acquisition, and Resources. EMSC: Methodology, Validation, and Writing—Review & Editing. LLGT: Conceptualization, Methodology, and Validation & Writing.

Corresponding author

Correspondence to Torres-González Luis Carlos.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

Consent is approved by the research group.

Consent for publication

Consent is approved by the research group.

Ethics approval

Approved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keyla, RH.I., Leticia, GT.L., Maximiano, SC.E. et al. Activated carbon from agave wastes (agave tequilana) for supercapacitors via potentiostatic floating test. J Mater Sci: Mater Electron 32, 21432–21440 (2021). https://doi.org/10.1007/s10854-021-06649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06649-0

Navigation