Skip to main content
Log in

Rapid phytochemical microwave-assisted synthesis of zinc oxide nano flakes with excellent electrocatalytic activity for non-enzymatic electrochemical sensing of uric acid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the current research work, the author synthesized Zinc oxide (ZnO) NPs using crude black pepper (Piper nigrum) seed extract as a stabilizing, capping, and bio-reducing agent, using cost-effective and straightforward microwave irradiation techniques. The synthesized ZnO NPs analyzed for their structure, size, chemical state, elemental composition, internal and external morphology through spectroscopic and microscopic characterizations such as Powder X-ray diffraction (XRD), X-Ray Photo Electron Spectroscopy (XPS), Transmission Electron Microscope (TEM), Scanning electron microscope with energy dispersive X-ray analysis (SEM-EDAX), and Elemental mapping. The impact of three microwave irradiation times, such as 5, 10, and 15 min, upon crystallinity, morphology, and size of P. nigrum ZnO NPs was investigated. The ZnO NPs synthesized through irradiation for 10 min appeared to be more crystalline with flake-shaped morphology with an average of 30 nm size and were determined based on SEM, XRD, TEM. The electrocatalytic activity of three different microwave-assisted synthesized P. nigrum ZnO NPs-fabricated Screen-Printed Carbon Electrode (SPCE) against uric acid was studied using impedance spectroscopy and cyclic voltammetry. The detection of uric acid was performed for P. nigrum ZnO NPs-10 min/SPCE by using Differential Pulse Voltammetry (DPV) showed a sensitivity of 40.485 µAmM−1 cm−2 within the detection limit of (1.65 µM, S/N = 3) with a linear dynamic range from (50–500 µM), and a correlation coefficient of R = 0.9912. The amperometric studies of P. nigrum ZnO NPs-10 min/SPCE have optimized at potential + 0.2 V, and the calibration plot is linear over in the concentration range of (10–900 nM) with a correlation coefficient of R = 0.9952.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G. Thomas, Nature 389, 907 (1997)

    Article  CAS  Google Scholar 

  2. M.S. Tokumoto, V. Briois, C.V. Santilli, S.H. Pulcinelli, J. Sol-Gel Sci. Technol. 26, 547 (2003). https://doi.org/10.1023/A:1020711702332

    Article  CAS  Google Scholar 

  3. P. Kumar, L.S. Panchakarla, S. Venkataprasad Bhat, U. Maitra, K.S. Subrahmanyam, C.N.R. Rao, Nanotech. 21, 385701 (2010). https://doi.org/10.1088/0957-4484/21/38/385701

    Article  CAS  Google Scholar 

  4. Z.L. Wang, Mater. Today. 7, 26 (2004). https://doi.org/10.1016/S1369-7021(04)00286-X

    Article  CAS  Google Scholar 

  5. C.N.R. Rao, A. Govindaraj, Nanotubes and Nanowires, in Nanoscience & Nanotechnology Series (Royal Society of Chemistry, London, United Kingdom, 2005)

    Google Scholar 

  6. H. Hayashi, A. Ishizaka, M. Haemori, H. Koinuma, Appl. Phys. Lett. 82, 1365 (2003). https://doi.org/10.1063/1.1554767

    Article  CAS  Google Scholar 

  7. L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, J. Clust. Sci. 18, 660 (2007). https://doi.org/10.1007/s10876-007-0129-6

    Article  CAS  Google Scholar 

  8. H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Appl. Phys. Lett. 82, 2023 (2003). https://doi.org/10.1063/1.1564870

    Article  CAS  Google Scholar 

  9. Y. Hames, Z. Alpaslan, A. Kösemen, S.E. San, Y. Yerli, Sol. Energy. 84, 426 (2010). https://doi.org/10.1016/j.solener.2009.12.013

    Article  CAS  Google Scholar 

  10. P.V. Kamat, R. Huehn, R. Nicolaescu, J. Phys. Chem. B. 106, 788 (2002). https://doi.org/10.1021/jp013602t

    Article  CAS  Google Scholar 

  11. P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao, Z.L. Wang, Science 309, 1700 (2005). https://doi.org/10.1126/science.1116495

    Article  CAS  Google Scholar 

  12. E. Topoglidis, A.E. Cass, B. O’Regan, J.R. Durrant, J. Electroanal. Chem. 517, 20 (2001). https://doi.org/10.1016/S0022-0728(01)00673-8

    Article  CAS  Google Scholar 

  13. W. Jun, X. Changsheng, B. Zikui, Z. Bailin, H. Kaijin, W. Run, Mater. Sci. Eng. B. 95, 157 (2002). https://doi.org/10.1016/S0921-5107(02)00227-1

    Article  Google Scholar 

  14. P. Sharma, K. Sreenivas, K.V. Rao, J. Appl. Phys. 93, 3963 (2003). https://doi.org/10.1063/1.1558994

    Article  CAS  Google Scholar 

  15. X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, Sensors Actuators B Chem. 102, 248 (2004). https://doi.org/10.1016/j.snb.2004.04.080

    Article  CAS  Google Scholar 

  16. M. Singhai, V. Chhabra, P. Kang, D.O. Shah, Mater. Res. Bull. 32, 239 (1997). https://doi.org/10.1016/S0025-5408(96)00175-4

    Article  Google Scholar 

  17. F. Rataboul, C. Nayral, M.-J. Casanove, A. Maisonnat, B. Chaudret, J. Organomet. Chem. 643–644, 307 (2002). https://doi.org/10.1016/S0022-328X(01)01378-X

    Article  Google Scholar 

  18. J.J. Wu, S.-C. Liu, Adv. Mater. 14, 215 (2002). https://doi.org/10.1002/15214095(20020205)14:3%3c215::AID-ADMA215%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  19. K. Okuyama, I. Wuled Lenggoro, Chem. Eng. Sci. 58, 537 (2003). https://doi.org/10.1016/S0009-2509(02)00578-X

    Article  CAS  Google Scholar 

  20. M. Bitenc, M. Marinšek, Z. Crnjak Orel, J. Eur. Ceram. Soc. 28, 2915 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.05.003

    Article  CAS  Google Scholar 

  21. Y.L. Wei, P.-C. Chang, J. Phys. Chem. Solids. 69, 688 (2008). https://doi.org/10.1016/j.jpcs.2007.07.094

    Article  CAS  Google Scholar 

  22. H.J. Zhai, W.H. Wu, F. Lu, H.S. Wang, C. Wang, Mater. Chem. Phys. 112, 1024 (2008). https://doi.org/10.1016/j.matchemphys.2008.07.020

    Article  CAS  Google Scholar 

  23. S. Sinha, I. Pan, P. Chanda, S.K. Sen, J. Appl. Biosci. 19, 1113 (2009). http://m.elewa.org/JABS/2009/19/9.pdf

  24. C. Vidya, S. Hirematha, M.N. Chandraprabha et al., Int J Curr Eng Technol. 1, 118 (2013)

    Google Scholar 

  25. H. Agarwal, S. Venkat Kumar, S. Rajeshkumar, Res.-Efficient Technol. 3, 406 (2017)

    Article  Google Scholar 

  26. N.A. Samat, RMd. Nor, Ceram Int. 39, S545 (2013)

    Article  Google Scholar 

  27. V.V. Makarov, A.J. Love, O.V. Sinitsyna et al., Acta Nat. 6, 35 (2014)

    Article  CAS  Google Scholar 

  28. G. Nahak, R.K. Sahu, J. Am. Pharma. Sci. 1, 153 (2011)

    Google Scholar 

  29. S.K. Reshmi, E. Sathya, P.S. Devi, J. Pharm. Res 3, 2502 (2010)

    CAS  Google Scholar 

  30. G. Nahak, R.K. Sahu, J Appl Pharm Sci 1, 153 (2011)

    Google Scholar 

  31. J. Zhao, W. Yan, Chapter 8 - Microwave-assisted Inorganic Syntheses. Modern Inorganic Synthetic Chemistry. R. Xu, W. Pang, Q. Huo., (Elsevier, Amsterdam 2011)

  32. G.P. Barreto, G. Morales, M.L.L. Quintanilla, J. Mater 2013, 11 (2013). https://doi.org/10.1155/2013/478681

    Article  CAS  Google Scholar 

  33. F. Zhang, C. Li, X. Li, X. Wang, Q. Wan, Y. Xian, L. Jin, K. Talanta. 68, 1353 (2006). https://doi.org/10.1016/j.talanta.2005.07.051

  34. T.R. Merriman, N. Dalbeth, Jt. Bone Spine. 78, 35 (2011). https://doi.org/10.1016/j.jbspin.2010.02.027

    Article  CAS  Google Scholar 

  35. T. Zhang, X. Sun, B. Liu, Acta Part A Mol. Biomol Spectrosc. 79, 1566 (2011). https://doi.org/10.1016/j.saa.2011.05.014

    Article  CAS  Google Scholar 

  36. V. Bhole, J.W.J. Choi, S. Woo Kim, M. de Vera, H. Choi, Am. J. Med. 123, 957 (2010). https://doi.org/10.1016/j.amjmed.2010.03.027

    Article  CAS  Google Scholar 

  37. G. Lippi, G. Targher, M. Montagnana, G.L. Salvagno, G.C. Guidi, Diabetes Care 31, e68 (2008). https://doi.org/10.2337/dc08-0468

    Article  Google Scholar 

  38. K. Income, N. Ratnarathorn, N. Khamchaiyo, C. Srisuvo, L. Ruckthong, W. Dungchai, Int. J. Anal. Chem. 2019, 1 (2019). https://doi.org/10.1155/2019/3457247

    Article  CAS  Google Scholar 

  39. L. Zhao, J. Blackburn, C.L. Brosseau, Anal. Chem. 87, 441 (2015). https://doi.org/10.1021/ac503967s

    Article  CAS  Google Scholar 

  40. J. Wang, M.P. Chatrathi, B. Tian, R. Polsky, Anal. Chem. 72, 2514 (2000). https://doi.org/10.1021/ac991489l

    Article  CAS  Google Scholar 

  41. R. Sakuma, T. Nishina, M. Kitamura, Clin Chem. 33, 1427 (1987). https://www.ncbi.nlm.nih.gov/pubmed/3608161

  42. M. Czauderna, J. Kowalczyk, J. Chromatogr. B Biomed. Sci. Appl. 744, 129 (2000). https://doi.org/10.1016/S0378-4347(00)00239-5

    Article  CAS  Google Scholar 

  43. J. Yu, S. Wang, L. Ge, S. Ge, Bioelectron. 26, 3284 (2011). https://doi.org/10.1016/j.bios.2010.12.044

    Article  CAS  Google Scholar 

  44. J.C. Fanguy, C.S. Henry, Electrophoresis 23, 767 (2002). https://doi.org/10.1002/1522-2683(200203)23:5%3c767::AID-ELPS767%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  45. Y. Zhao, X. Yang, W. Lu, H. Liao, F. Liao, Microchim. Acta. 164, 1 (2009). https://doi.org/10.1007/s00604-008-0044-z

    Article  CAS  Google Scholar 

  46. C.L. Sun, C.T. Chang, H.H. Lee, J. Zhou, J. Wang, T.K. Sham, W.F. Pong, ACS Nano 5, 7788 (2011). https://doi.org/10.1021/nn2015908

    Article  CAS  Google Scholar 

  47. M. Choukairi, D. Bouchta, L. Bounab et al., J. Electroanal. Chem. 758, 117 (2015). https://doi.org/10.1016/j.jelechem.2015.10.012

    Article  CAS  Google Scholar 

  48. E. Popa, Y. Kubota, D.A. Tryk, A. Anal, Chem. 72, 1724 (2000). https://doi.org/10.1021/ac990862m

    Article  CAS  Google Scholar 

  49. M.N. Omar, A.B. Salleh, H.N. Lim, A. Ahmad Tajudin, Anal. Biochem. 509, 135 (2016). https://doi.org/10.1016/j.ab.2016.06.030

    Article  CAS  Google Scholar 

  50. W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chem. 81, 5821 (2009). https://doi.org/10.1021/ac9007573

    Article  CAS  Google Scholar 

  51. C.L. Sun, H.-H. Lee, J.M. Yang, C.C. Wu, Biosens. Bioelectron. 26, 3450 (2011). https://doi.org/10.1016/j.bios.2011.01.023

    Article  CAS  Google Scholar 

  52. X.J. Huang, H.S. Im, O. Yarimaga, J.H. Kim, D.-H. Lee, H.S. Kim, Y.K. Choi, J. Phys. Chem. B. 110, 21850 (2006). https://doi.org/10.1021/jp063749q

    Article  CAS  Google Scholar 

  53. J.C. Chen, H.H. Chung, C.T. Hsu, D.M. Tsai, A.S. Kumar, J.M. Zen, Sensors Actuators B Chem. 110, 364 (2005). https://doi.org/10.1016/j.snb.2005.02.026

    Article  CAS  Google Scholar 

  54. J. Huang, Y. Liu, H. Hou, T. You, Biosens. Bioelectron. 24, 632 (2008). https://doi.org/10.1016/j.bios.2008.06.011

    Article  CAS  Google Scholar 

  55. Y.B. Hahn, R. Ahmad, N. Tripathy, Chem. Commun. 48, 10369 (2012). https://doi.org/10.1039/c2cc34706g

    Article  CAS  Google Scholar 

  56. R. Ahmad, M. Vaseem, N. Tripathy, Y.B. Hahn, Anal. Chem. 85, 10448 (2013). https://doi.org/10.1021/ac402925r

    Article  CAS  Google Scholar 

  57. P.R. Solanki, A. Kaushik, V.V. Agrawal, B.D. Malhotra, NPG Asia Mater. 3, 17 (2011). https://doi.org/10.1038/asiamat.2010.137

    Article  Google Scholar 

  58. R. Ahmad, N. Tripathy, J.H. Park, Y.B. Hahn, Chem. Commun. 51, 11968 (2015). https://doi.org/10.1039/C5CC03656A

    Article  CAS  Google Scholar 

  59. B. Šljukić, C.E. Banks, R.G. Compton, Nano Lett. 6, 1556 (2006). https://doi.org/10.1021/nl060366v

    Article  CAS  Google Scholar 

  60. N. Tripathy, R. Ahmad, S.H. Bang, G. Khang, J. Min, Y.B. Hahn, A.C.S. Appl, Mater. Interfaces. 8, 15128–15137 (2016). https://doi.org/10.1021/acsami.6b04494

    Article  CAS  Google Scholar 

  61. R. Ahmad, N. Tripathy, Y.B. Hahn, Biosens. Bioelectron. 45, 281 (2013). https://doi.org/10.1016/j.bios.2013.01.021

    Article  CAS  Google Scholar 

  62. N. Tripathy, R. Ahmad, H.S. Jeong, Y.B. Hahn, Inorg. Chem. 51, 1104 (2012). https://doi.org/10.1021/ic2022598

    Article  CAS  Google Scholar 

  63. X. Cao, X. Cao, H. Guo, T. Li, Y. Jie, N. Wang, Z.L. Wang, ACS Nano 10, 8038 (2016). https://doi.org/10.1021/acsnano.6b04121

    Article  CAS  Google Scholar 

  64. M.A.T. Gilmartin, J.P. Hart, B. Birch, Analyst. 117, 1299 (1992)

    Article  CAS  Google Scholar 

  65. H. Kanso, M.B. González García, L.F. Llano, S. Ma, R. Ludwig, P. Fanjul Bolado, D.H. Santos, Biosens. Bioelectron. 93, 298 (2017). https://doi.org/10.1016/j.bios.2016.08.069

    Article  CAS  Google Scholar 

  66. M. Metto, S. Eramias, B. Gelagay, A.P. Washe, Int. J. Electrochem. 2019, 1 (2019). https://doi.org/10.1155/2019/6318515

    Article  CAS  Google Scholar 

  67. M. Dequaire, A. Heller, Anal. Chem. 74, 4370 (2002). https://doi.org/10.1021/ac025541g

    Article  CAS  Google Scholar 

  68. K.C. Honeychurch, Sci. J. 2, 1 (2012). https://doi.org/10.5640/insc.020101

    Article  CAS  Google Scholar 

  69. Y. Zhang, X. Jiang, J. Zhang, H. Zhang, Y. Li, Biosens. Bioelectron. 130, 315 (2019). https://doi.org/10.1016/j.bios.2019.01.043

    Article  CAS  Google Scholar 

  70. S. Chitravathi, B.E. Kumara Swamy, U. Chandra, G.P. Mamatha, B.S. Sherigara, J. Electroanal. Chem. 645, 10 (2010)

    Article  CAS  Google Scholar 

  71. S.P. Swadhini, R. Santhosh, C. Uma, S. Mythili, A. Sathiavelu, Inter J. Pharm BioSci. 2, 115 (2011)

    Google Scholar 

  72. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, J. Adv. Res. 7, 17 (2016)

    Article  CAS  Google Scholar 

  73. S. Keerthana, N. Keerthiraj, K. Byrappa, D. Green, BAOJ Physics. 2, 12 (2017)

    Google Scholar 

  74. S.K. Patra, A novel chemical approach to fabricate ZnO Nanostructure, Ph.D. thesis, (Indian Institute of Technology, Kharagpur, 2008)

  75. K. Venkateswarlu, D. Sreekanth, M. Sandhyarani, V. Muthupandi, A.C. Bose, N. Rameshbabu, Inter J. Biosci. 2, 6 (2012)

    Google Scholar 

  76. M.H. Koupaei, B. Shareghi, A.A. Saboury, F. Davar, A. Semnani, M. Evini, RSC Adv. 6, 42313 (2016). https://doi.org/10.1039/C5RA24862K

    Article  CAS  Google Scholar 

  77. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater. 12, 323 (2002). https://doi.org/10.1002/1616-3028(20020517)12:5%3c323::AIDADFM323%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  78. P. Scherrer, Mathematisch-physikalische Klasse 1918, 98 (1918)

    Google Scholar 

  79. D.A.M. Osman, M.A. Mustafa, J. Nanosci. Nanoeng. 1, 248 (2015)

    Google Scholar 

  80. A. Fulati, S.M.U. Ali, M.H. Asif et al., Sensor Actuat B-Chem. 150, 673 (2010). https://doi.org/10.1016/j.snb.2010.08.021

    Article  CAS  Google Scholar 

  81. S. Polarz, J. Strunk, V. Ischenko et al., Chem. Int. Ed. 45, 2965 (2006). https://doi.org/10.1002/anie.200503068

    Article  CAS  Google Scholar 

  82. S. Liu, J. Yu, M. Jaroniec, Chem. Mater. 23, 4085 (2011). https://doi.org/10.1021/cm200597m

    Article  CAS  Google Scholar 

  83. D.N. Pei, L. Gong, A.Y. Zhang et al., Nat. Commun. 6, 8696 (2015). https://doi.org/10.1038/ncomms9696

    Article  CAS  Google Scholar 

  84. S.K. Pandey, S.K. Pandey, C. Mukherjee et al., J. Mater. Sci.: Mater. Electron. 24, 2541 (2013)

    CAS  Google Scholar 

  85. M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, Thin Solid Films 280, 20 (1996)

    Article  CAS  Google Scholar 

  86. H.B. Fan, S.Y. Yang, P.F. Zhang et al., Chin. Phys. Lett. 24, 2108 (2007)

    Article  CAS  Google Scholar 

  87. J. Lee, J. Chung, S. Lim, Phys. E. 42, 2143 (2010)

    Article  CAS  Google Scholar 

  88. Y. Zheng, Z. Wang, F. Peng, L. Fu, Braz. J. Pharm. Sci. 52, 782 (2016). https://doi.org/10.1590/S1984-82502016000400023

    Article  Google Scholar 

  89. H. Li, K. Yu, H. Fu, B. Guo, X. Lei, Z. Zhu, J. Phys. Chem. C. 119, 7959 (2015). https://doi.org/10.1021/acs.jpcc.5b00890

    Article  CAS  Google Scholar 

  90. S.M. Al-Hilli, R.T. Al-Mofarji, P. Klason, M. Willander, J. Appl Phys. 103, 14302 (2008)

    Article  Google Scholar 

  91. Y. Zhao, X. Yan, Z. Kang et al., Microchim. Acta 180, 759 (2013). https://doi.org/10.1007/s00604-013-0981-z

    Article  CAS  Google Scholar 

  92. A.J. Bard, L.R. Faulkner, Fundamentals and Applications: Electrochemical Methods (Wiley, NY, USA, 2001)

    Google Scholar 

  93. C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, J. Phys. Chem. C. 113, 20127 (2009). https://doi.org/10.1021/jp908090s

    Article  CAS  Google Scholar 

  94. R.B. Keithley, P. Takmakov, E.S. Bucher et al., Anal. Chem. 83, 3563 (2011). https://doi.org/10.1021/ac200143v

    Article  CAS  Google Scholar 

  95. X. Cao, X. Cai, Q. Feng, S. Jia, N. Wang, Anal Chim Acta. 752, 101 (2012). https://doi.org/10.1016/j.aca.2012.09.034

    Article  CAS  Google Scholar 

  96. Z. Goodarzi, M. Maghrebi, A.F. Zavareh et al., J. Nanostruct. Chem. 5, 237 (2015). https://doi.org/10.1007/s40097-015-0154-1

    Article  CAS  Google Scholar 

  97. O.B. da Silva, S.A.S. Machado, Anal. Methods. 4, 2348 (2012). https://doi.org/10.1039/C2AY25111F

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gomathi Priya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, B., Priya, P.G. Rapid phytochemical microwave-assisted synthesis of zinc oxide nano flakes with excellent electrocatalytic activity for non-enzymatic electrochemical sensing of uric acid. J Mater Sci: Mater Electron 32, 21406–21424 (2021). https://doi.org/10.1007/s10854-021-06644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06644-5

Navigation