Skip to main content

Advertisement

Log in

Hierarchical porous carbon obtained from directly carbonizing carex meyeriana for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hierarchical porous carbon materials with high surface area are facilely prepared by directly carbonizing carex meyeriana without any extra activation procedure. The as-prepared porous carbon samples possess high Brunauer–Emmett–Teller (BET) surface areas (in the ~ 518–742 m2 g−1 range) and unique hierarchical porous structure containing macropore channels and mesopores and micropores developed in the wall of macropores. These intriguing characteristics make the as-prepared hierarchical porous carbon samples a promising electrode material for supercapacitors. The capacitive performance was measured in the three-electrode system with 6 M KOH electrolyte. The hierarchical porous carbon prepared at the carbonization temperature of 1000 °C presents a high specific capacitance of 178.6 F g−1 at a current density of 0.5 A g−1, a good rate performance ( about 65.2% retention ratio at the current density of 20 A g−1), and an excellent cycling stability (no obvious performance fading after 10,000 cycles). In addition, the fabricated two-electrode device achieves an energy density of 4.33 Wh kg−1 at a high power density of 5 kW kg−1. These results provide a green and facile method to synthesize the electrode material from biomass for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014)

    Article  CAS  Google Scholar 

  2. F. Bonaccorso, L. Colombo, G. Yu, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501–1246509 (2015)

    Article  CAS  Google Scholar 

  3. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)

    Article  CAS  Google Scholar 

  4. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  5. P.J. Hall, M. Mirzaeian, S.I. Fletcher, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)

    Article  CAS  Google Scholar 

  6. H. Ji, X. Zhao, Z. Qiao, Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 3317–3323 (2014)

    Article  CAS  Google Scholar 

  7. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  CAS  Google Scholar 

  8. S. Subhadarshini, E. Pavitra, G. Seeta Rama Raju, N.R. Chodankar, D.K. Goswam, Y. Han, Y. Huh, N. Das, One-dimensional NiSe-Se hollow nanotubular architecture as a binder-free cathode with enhanced redox reactions for high-performance hybrid supercapacitors. ACS Appl. Mater. Interfaces 12, 29302–29315 (2020)

    CAS  Google Scholar 

  9. S. Subhadarshini, E. Pavitra, One-pot facile synthesis and electrochemical evaluation of selenium enriched cobalt selenide nanotube for supercapacitor application. Ceram. Inter. 47, 15293–15306 (2021)

    Article  CAS  Google Scholar 

  10. K. Xie, X. Qin, X. Wang, Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 24, 347–352 (2012)

    Article  CAS  Google Scholar 

  11. A. Vlad, A. Balducci, Supercapacitors: porous materials get energized. Nat. Mater. 16, 161–162 (2017)

    Article  CAS  Google Scholar 

  12. L. Zhang, X. Yang, F. Zhang, Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J. Am. Chem. Soc. 135, 5921–5929 (2013)

    Article  CAS  Google Scholar 

  13. Z. Ling, G. Wang, M. Zhang, Boric acid-mediated B N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance. Nanoscale 7, 5120–5125 (2015)

    Article  CAS  Google Scholar 

  14. M. Zhu, F. Pu, Z. Wang, Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68, 185–194 (2014)

    Article  CAS  Google Scholar 

  15. Y. Zhang, B. Tao, X. Xing, Sandwich-like nitrogen-doped porous carbon/graphene nanofl akes with high-rate capacitive performance. Nanoscale 8, 7889–7898 (2016)

    Article  CAS  Google Scholar 

  16. F. Guo, X. Jiang, X. Li, K. Peng, C. Guo, Z. Rao, Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitors. J. Mater. Sc. Mater. Electron. 30, 914–925 (2019)

    Article  CAS  Google Scholar 

  17. T. Zhu, J. Zhou, Z. Li, Hierarchical porous and N-doped carbon nanotubes derived from polyaniline for electrode materials in supercapacitors. J. Mater. Chem. A 2, 12545–12551 (2014)

    Article  CAS  Google Scholar 

  18. S. Hou, M. Liu, L. Wu, Methane sulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors. J. Power Sources 387, 81–90 (2018)

    Article  CAS  Google Scholar 

  19. D. Zhang, M. Han, B. Wang, Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: excellent rate capability and cycle stability. J. Power Sources 358, 112–120 (2017)

    Article  CAS  Google Scholar 

  20. Y. Pan, Y. Zhao, S. Mu, Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials. J. Mater. Chem. A 5, 9544–9552 (2017)

    Article  CAS  Google Scholar 

  21. J. Zhang, L. Jin, J. Chen, Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes. Carbon 55, 221–232 (2013)

    Article  CAS  Google Scholar 

  22. Q. Zhao, X. Wang, C. Wu, Supercapacitive performance of hierarchical porous carbon microspheres prepared by simple one-pot method. J. Power Sources 254, 10–17 (2014)

    Article  CAS  Google Scholar 

  23. X. Fan, C. Yu, J. Yang, A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 5, 1401761 (2015)

    Article  CAS  Google Scholar 

  24. D. Zhang, M. Han, B. Wang, Supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: excellent rate capability and cycle stability. J. Power Sources 358, 112–120 (2017)

    Article  CAS  Google Scholar 

  25. Y. Tang, S. Liu, B. Zheng, Activation-free fabrication of high-surface-area porous carbon nanosheets from conjugated copolymers. Chem. Commun. 54, 11431–11434 (2018)

    Article  CAS  Google Scholar 

  26. S. Subhadarshini, R. Singh, D.K. Goswarmi, A.K. Das, NCh. Das, Electrodeposited Cu2O nanopetal architecture as superhydrophobic and antibacterial surface. Langmuir 35, 17166–17176 (2019)

    Article  CAS  Google Scholar 

  27. A. Kalijadis, J. Đorđević, M. Vukčević, Z. Laušević, Preparation of boron-doped hydrothermal carbon from glucose for carbon paste electrode. Carbon 95, 42–50 (2015)

    Article  CAS  Google Scholar 

  28. X. Lin, Y. Liang, Z. Lu, Mechanochemistry: a green, activation-free and top-down strategy to high-surface-area carbon materials. ACS Sustain. Chem. Eng. 5, 8535–8540 (2017)

    Article  CAS  Google Scholar 

  29. X. Lin, Y. Tang, Q. Su, Hierarchical porous carbon materials: structure design, functional modification and new energy devices applications. CIESC Journal 7, 2586–2598 (2020)

    Google Scholar 

  30. H. Lu, X. Zhao, Biomass-derived carbon electrode materials for supercapacitors. Sustain. Energy Fuels 1, 1265–1281 (2017)

    Article  CAS  Google Scholar 

  31. X. Hao, J. Wang, B. Ding, Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors. J. Power Sources 352, 34–41 (2017)

    Article  CAS  Google Scholar 

  32. J. Deng, M. Li, Y. Wang, Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem. 18, 4824–4854 (2016)

    Article  CAS  Google Scholar 

  33. S. Lu, M. Jin, Y. Zhang, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 8, 1702545 (2018)

    Article  CAS  Google Scholar 

  34. T. Wei, X. Wei, L. Yang, A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage. J. Power Sources 331, 373–381 (2016)

    Article  CAS  Google Scholar 

  35. R. Berenguer, F.J. García-Mateos, R. Ruiz-Rosas, Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem. 18, 1506–1515 (2016)

    Article  CAS  Google Scholar 

  36. Y. Zhang, S. Liu, X. Zheng, Biomass organs control the porosity of their pyrolyzed carbon. Adv. Funct. Mater. 27, 1–8 (2017)

    Google Scholar 

  37. X. Yu, Y. Wang, L. Li, H. Li, Y. Shang, Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Sci. Rep. 7, 1–8 (2017)

    CAS  Google Scholar 

  38. C. Zequine, C.K. Ranaweera, Z. Wang, Z.P. Tripathi, K. Ramasamy, P.R. Dvornic, R.K. Gupta, High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications. Sci. Rep. 6, 1–10 (2016)

    Article  CAS  Google Scholar 

  39. S. Gao, K. Geng, H. Liu, P. Wang, J. Wang, Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ. Sci. 8, 221–229 (2015)

    Article  CAS  Google Scholar 

  40. X. Wang, D. Kong, Y. Zhang, Q. Song, J. Ning, Y. Song, L. Zhi, All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale 8, 9146–9150 (2016)

    Article  CAS  Google Scholar 

  41. X. Su, J. Chen, G. Zheng, J. Yang, X. Guan, P. Liu, X. Zheng, Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Appl. Surf. Sci. 436, 327–336 (2018)

    Article  CAS  Google Scholar 

  42. Z. Wang, P. Tammela, M. Strømme, L. Nyholm, Cellulose-based supercapacitors: material and performance considerations. Adv. Energy Mater. 7, 1700130 (2017)

    Article  CAS  Google Scholar 

  43. M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014)

    Article  CAS  Google Scholar 

  44. Y. Yoon, K. Lee, S. Kwon, S. Seo, Y. Shin, Y. Park, D. Kim, J.Y. Choi, H. Lee, Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Education Department of Liaoning Province (201901003)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 749 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Bi, J., Lei, M. et al. Hierarchical porous carbon obtained from directly carbonizing carex meyeriana for high-performance supercapacitors. J Mater Sci: Mater Electron 32, 21278–21287 (2021). https://doi.org/10.1007/s10854-021-06630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06630-x

Navigation