Skip to main content
Log in

Structure, morphology, dielectric, and impedance properties of (1-x) (Al0.2La0.8TiO3) + (x) (CuTiO3) (x = 0.2–0.8) nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1−x) (Al0.2La0.8TiO3) + (x) (CuTiO3) (x = 0.2–0.8) [ALTCT] nanocomposites were prepared through hydrothermal process. The diffraction study indicated the formation of tetragonal structure expressing maximum intense peak at ~ 25.586o for all samples. Lattice constants a = b and c values were found to be increasing from 3.774 to 3.780 Å, and 9.394–9.950 Å, respectively as a function of ‘x’. The surface morphology showed that the formation of nanospheres, and hexagonal nanorods. Further, the dielectric behavior was studied, and the results showed space charge effect, dielectric relaxation dynamics, and frequency-dependent dielectric properties. Impedance and dielectric modulus formalism was carried out to elucidate the microstructure, polarization, and electrical conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data will be made immediately available based on the request.

References

  1. B. Venkata Shiva Reddy, K. Srinivas, N. Suresh Kumar, K. Chandra Babu Naidu, S. Ramesh, Nanorods like microstructure, photocatalytic activity, and ac-electrical properties of (1-x) (Al0.2La0.8TiO3) + (x) (BaTiO3) (x = 0.2, 0.4, 0.6 & 0.8) nanocomposites. Chem. Phys. Lett. 752, 137552, (2020). https://doi.org/10.1016/j.cplett.2020.137552

    Article  CAS  Google Scholar 

  2. S. Dastagiri, M.V. Lakshmaiah, K. ChandraBabuNaidu, Defect dipole polarization mechanism in low-dimensional Europium substituted Al0.8La0.2TiO3 nanostructures. Phys. E 120, 114058 (2020). https://doi.org/10.1016/j.physe.2020.114058

    Article  CAS  Google Scholar 

  3. B. Venkata Shiva Reddy, K. Srinivas, N. Suresh Kumar, K. Chandra Babu, Naidu, Phase transformation, nanorods like morphology, wide band gap and dielectric properties of 1-x (Al0.2La0.8TiO3) + x (BaTiO3) (x = 0.2–0.8) nanocomposites. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03469-6

    Article  Google Scholar 

  4. J. Jin, Y. Zhang, G. Li, Z. Chu, G. Li, Synthesis and enhanced gas sensing properties of iron titanate and copper titanate nanomaterials. Mater. Chem. Phys. 249, 123016 (2020). https://doi.org/10.1016/j.matchemphys.2020.123016

    Article  CAS  Google Scholar 

  5. T. Tchouank Tekou Carol, J. Mohammed, R. Bhargava, S. Khan, S. Mishra, S.K. Godara, A.K. Srivastava, Crystal structure refinement, optical properties, dielectric response, and impedance spectroscopy of Ni2+-Co2+ substituted bismuth copper titanate (BCTO). Mater. Chem. Phys. 248, 122933 (2020). https://doi.org/10.1016/j.matchemphys.2020.122933

    Article  CAS  Google Scholar 

  6. A. Yu Kanazawa, H. Itadani, K. Hashimoto, K. Uematsu, M. Toda, Sato, Room temperature adsorption of propene and propane on copper ions distributed in titanate nanotubes. Appl. Surf. Sci. 483, 642–651 (2019). https://doi.org/10.1016/j.apsusc.2019.03.328

    Article  CAS  Google Scholar 

  7. R. Kamalesh Pala, A. Janab, P.P. Deyb, M.M. Rayb, A. Seikhc, Gayen, Performance analysis of Fe-doped calcium copper titanate quadruple perovskite in optoelectronic device. Chem. Phys. Lett. 709, 110–115 (2018). https://doi.org/10.1016/j.cplett.2018.08.052

    Article  CAS  Google Scholar 

  8. S. Tong, H. Jin, D. Zheng, W. Wang, X. Li, Y. Xu, W. Song, Investigations on copper–titanate intercalation materials for amperometric sensor. Biosens. Bioelectron. 24, 2404–2409 (2009). https://doi.org/10.1016/j.bios.2008.12.015

    Article  CAS  Google Scholar 

  9. P. Scherrer, Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen, nachrichten von der gesellschaft der wissenschaften, Gottingen. Math. Phys. Kl. 2, 98–100 (1918)

    Google Scholar 

  10. K.W. Wagner, The distribution of relaxation times in typical dielectrics. Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  11. Q. Hou, K. Sun, P. Xie, K. Yan, R. Fan, Y. Liu, Ultrahigh dielectric loss of epsilon-negative copper granular composites. Mater. Lett. 169, 86–89 (2016). https://doi.org/10.1016/j.matlet.2016.01.092

    Article  CAS  Google Scholar 

  12. D. Baba Basha, An improved dielectric behavior of hydrothermally synthesized Ba0.4La0.6–yEuyTiO3 (y = 0.01–0.04) nanorods. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-05297-8

    Article  Google Scholar 

  13. D.B. Basha, Hydrothermal synthesis of Ba1–xLaxTiO3 (x = 0.2, 0.4, 0.6, & 0.8) nanorods: structure, morphology, optical band gap, and dielectricity behavior. J. Mater. Sci. 31, 16448–16458 (2020). https://doi.org/10.1007/s10854-020-04199-5

    Article  CAS  Google Scholar 

  14. R.M. De la Cruz, C. Kanyinda-Malu, J.E. Muñoz, Santiuste, Dielectric tensor of a rectangular arrangement of Ag nanoparticles in anisotropic LiNbO3: analysis of the negative epsilon conditions. Phys. B 581, 411957 (2020)

    Article  Google Scholar 

  15. D. Schurig, J.J. Mock, D.R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006)

    Article  Google Scholar 

  16. M.A. Rahman, E. Ahamed, M.R.I. Faruque, M.T. Islam, Preparation of NiAl2O4-based flexible substrates for metamaterials with negative dielectric properties. Sci. Rep. 8, 14948 (2018)

    Article  Google Scholar 

  17. O. Sakai, A. Iwai, Y. Omura, S. Iio, T. Naito, Wave propagation in and around negative-dielectric-constant discharge plasma. Phys. Plasmas 25, 031901 (2018)

    Article  Google Scholar 

  18. B. Li, G. Sui, W.H. Zhong, Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv. Mater. 21, 4176–4180 (2009)

    Article  CAS  Google Scholar 

  19. A. Ekaterina Axelrod, Y. Puzenko, R. Haruvy, Y. Reisfeld, Feldman, Negative dielectric loss phenomenon in porous sol–gel glasses. J. Non-Cryst. Solids 352, 4166–4173 (2006). doi:https://doi.org/10.1016/j.jnoncrysol.2006.07.008

    Article  CAS  Google Scholar 

  20. A. Mallikarjuna, S. Ramesh, N.S. Kumar, K. Chandra Babu Naidu, K.V. Ratnam, H. Manjunatha, B.P. Rao, Structural transformation and high negative dielectric constant behaviour in (1-x) (Al0.2La0.8TiO3) + (x) (BiFeO3) (x = 0.2–0.8) nanocomposites. Phys. E 122, 114204 (2020)

    Article  CAS  Google Scholar 

  21. A. Mallikarjuna, S. Ramesh, N. Suresh Kumar, K. Chandra Babu Naidu, K. Venkata Ratnam, H. Manjunatha, Photocatalytic activity, negative ac- electrical conductivity, dielectric modulus, and impedance properties in 0.6 (Al0.2La0.8TiO3) + 0.4 (BiFeO3) nanocomposite. Cryst. Res. Technol. 55, 1–10 (2020) 202000068

    Article  Google Scholar 

  22. N. Suresh Kumar, R. Padma Suvarna, K. Chandra Babu Naidu, Negative dielectric behavior in tetragonal La0.8Co0.2-xEuxTiO3 (x = 0.01–0.04) nanorods. Mater. Charact. 166, 110425 (2020)

    Article  Google Scholar 

  23. S. Dastagiri, M.V. Lakshmaiah, K. Chandra Babu Naidu, N. Suresh Kumar, A. Khan, Induced dielectric behavior in high dense AlxLa1–xTiO3 (x = 0.2–0.8) nanospheres. J. Mater. Sci. 30, 20253–20264 (2019)

    CAS  Google Scholar 

  24. N. Suresh Kumar, R. Padma Suvarna, K.C.B. Naidu, G. Ranjith Kumar, S. Ramesh, Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8Co0.2–zLazTiO3 (z = 0.05–0.2) nanoparticles. Ceram. Int. 44, 19408–19420 (2018)

    Article  Google Scholar 

  25. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Sol-gel synthesized and microwave heated Pb0.8–yLayCo0.2TiO3 (y = 0.2–0.8) nanoparticles: structural, morphological and dielectric properties. Ceram. Int. 44, 18189–18199 (2018)

    Article  CAS  Google Scholar 

  26. A. Manohar, V. Vijayakanth, R. Hong, Solvothermal reflux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J. Mater. Sci. 31(1), 799–806 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors express thankfulness to Dr. P. Sreeramulu, Assistant Professor (English), GITAM, Bangalore for providing English language editing services to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandra Babu Naidu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, B.V.S., Kumar, N.S., Babu, T.A. et al. Structure, morphology, dielectric, and impedance properties of (1-x) (Al0.2La0.8TiO3) + (x) (CuTiO3) (x = 0.2–0.8) nanocomposites. J Mater Sci: Mater Electron 32, 21225–21236 (2021). https://doi.org/10.1007/s10854-021-06625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06625-8

Navigation