Skip to main content
Log in

High thermal stability of BaTi0.93Sn0.07O3 perovskite for capacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, tremendous progress in the development of dielectric capacitors for temperature-based electronic applications has been observed. The development of lead-free ceramics with high dielectric constant, low dielectric loss, and thermal stability over a wide temperature range is yet a big concern of researchers. In the present work, lead-free BaTi0.93Sn0.07O3 bulk ceramics of an average grain size of 0.98 μm are prepared using the conventional solid-state reaction method. Rietveld analysis of XRD pattern suggests the formation of a single-phase tetragonal perovskite structure of BaTi0.93Sn0.07O3. The dielectric constant increases substantially, from room temperature (RT) to high temperature, i.e., up to 110 °C. Besides, the relative thermal stability of dielectric constant (TCC ≤ 30%) together with an ultra-low dielectric loss (tanδ ≤ 0.06) is achieved for the BaTi0.93Sn0.07O3 ceramics at 1 kHz in the temperature range from RT to 110 °C. A detailed analysis of BaTi0.93Sn0.07O3 ceramics is done with modulus, complex impedance spectroscopy, and conductivity studies. The outstanding stability of the dielectric properties is observed over a wide range of temperatures makes BaTi0.93Sn0.07O3 ceramics a promising material for the next generation’s high-performance capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.-J. Choi, J.-U. Woo, H.-G. Hwang, D.-S. Kim, M. Sanghadasa, S. Nahm, J. Eur. Ceram. Soc. 41, 2559–2567 (2021)

    Article  CAS  Google Scholar 

  2. H. Ji, D. Wang, W. Bao, Z. Lu, G. Wang, H. Yang, A. Mostaed, L. Li, A. Feteira, S. Sun, F. Xu, D. Li, C.-J. Ma, S.-Y. Liu, I.M. Reaney, Energy Storage Mater. 38, 113–120 (2021)

    Article  Google Scholar 

  3. F. Guan, Z. Dang, X. Chen, S. Huang, J. Wang, X. Cheng, Y. Wu, J. Alloys Compd. 871, 159269 (2021)

    Article  CAS  Google Scholar 

  4. C. Wang, B. Fang, X. Zhao, S. Zhang, X. Lu, J. Ding, J. Mater. Res. Technol. 9, 14818–14827 (2020)

    Article  CAS  Google Scholar 

  5. N.D. Scarisoreanu, F. Craciun, A. Andrei, V. Ion, R. Birjega, A. Moldovan, M. Dinescu, C. Galassi, Thin Solid Films 541, 127–130 (2013)

    Article  CAS  Google Scholar 

  6. H. Zou, D. Peng, G. Wu, X. Wang, D. Bao, J. Li, Y. Li, X. Yao, J. Appl. Phys. 114, 73103 (2013)

    Article  Google Scholar 

  7. G. Peng, C. Chen, J. Zhang, D. Zheng, S. Hu, H. Zhang, J. Mater .Sci.: Mater. Electron. 27, 3145–3151 (2016)

    CAS  Google Scholar 

  8. S.M. Salunkhe, S.R. Jigajeni, A.N. Tarale, M.M. Sutar, P.B. Joshi, J. Electron. Mater. 42, 1122–1132 (2013)

    Article  CAS  Google Scholar 

  9. J. Liu, Q. Liu, W. Wang, Y. Liang, D. Lub, P. Zhu, J. Phys. Chem. Solids 129, 111–121 (2019)

    Article  CAS  Google Scholar 

  10. P. Yadav, S. Sharma, N.P. Lalla, Ceram. Int. 43, 13339–13344 (2017)

    Article  CAS  Google Scholar 

  11. M. Zhou, J. Zhang, R. Ji, J. Wang, F. Yu, Mater. Lett. 106, 366–368 (2013)

    Article  CAS  Google Scholar 

  12. F. Zhao, Z. Yue, J. Pei, D. Yang, Z. Gui, L. Li, Appl. Phys. Lett. 91, 052903 (2007)

    Article  Google Scholar 

  13. F. Yan, H. Bai, X. Zhou, G. Ge, G. Li, B. Shen, J. Zhai, J. Mater. Chem. A 8, 11656–11664 (2020)

    Article  CAS  Google Scholar 

  14. P. Yadav, S. Sharma, N.P. Lalla, J. Appl. Phys. 121, 184101 (2017)

    Article  Google Scholar 

  15. C. Chao, Y. Zhou, T. Han, Y. Yang, J. Wei, H. Li, W. He, J. Alloys Compd. 825, 154060 (2020)

    Article  CAS  Google Scholar 

  16. H. Wang, J. Wu, J. Alloys Compd. 615, 969–974 (2014)

    Article  CAS  Google Scholar 

  17. S.K. Upadhyay, V.R. Reddy, S.M. Gupta, N.P. Lalla, K. Singh, Solid State Commun. 255, 42–46 (2017)

    Article  Google Scholar 

  18. A. Yadav, M. Fahad, S. Satapathy, P.M. Sarun, J. Alloys Compd. 797, 902–911 (2019)

    Article  CAS  Google Scholar 

  19. V. Purohit, R. Padhee, R.N.P. Choudhary, Ceram. Int. 44, 3993–3999 (2018)

    Article  CAS  Google Scholar 

  20. M. Kumari, A. Yadav, P.M. Sarun, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.337

    Article  Google Scholar 

  21. S. Dhankhar, R.S. Kundu, S. Rani, P. Sharma, S. Murugavel, R. Punia, N. Kishore, Electron. Mater. Lett. 13, 412–419 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Manisha Kumari acknowledges the IIT (ISM) Dhanbad for providing Senior Research Fellowship (SRF). The authors are grateful to TIFR Mumbai for the XRD and Central Research Facility (CRF) of the IIT (ISM) Dhanbad for the XPS and FE-SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Sarun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Sarun, P.M. High thermal stability of BaTi0.93Sn0.07O3 perovskite for capacitor applications. J Mater Sci: Mater Electron 33, 8607–8615 (2022). https://doi.org/10.1007/s10854-021-06623-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06623-w

Navigation