Skip to main content

Advertisement

Log in

The pre-acidizing corrosion on the surface of TiO2 enhanced the photocatalytic activity of g-C3N4/TiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, g-C3N4/TiO2 nanocatalysts were prepared by high-voltage electrospinning and hydrothermal methods. The surface of the pure TiO2 nanomaterial was treated by acidification before it was combined with g-C3N4.Various characterization methods were used to characterize the prepared photocatalyst. RhB (20 mg/L) was degraded as a target-degradable pollutant, the degradation efficiency of the nanocatalyst was measured under UV–Visible light. The results show that the degradation efficiency of the g-C3N4/TiO2 nanocomposite material that has undergone pre-acidification treatment is much higher than that of the untreated catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Wei et al., Effect of oil on the morphology and photocatalysis of emulsion electrospun titanium dioxide nanomaterials. Appl. Catal. A Gen. 499, 101–108 (2015)

    Article  CAS  Google Scholar 

  2. Y. Zhang, T. Wang, M. Zhou, Y. Wang, Z. Zhang, Hydrothermal preparation of Ag-TiO2 nanostructures with exposed 001}/{101 facets for enhancing visible light photocatalytic activity. Ceram. Int. 43, 3118–3126 (2017)

    Article  CAS  Google Scholar 

  3. H. Shi et al., Highly porous SnO2/TiO2 electrospun nanofibers with high photocatalytic activities. Ceram. Int. 40, 10383–10393 (2014)

    Article  CAS  Google Scholar 

  4. T. Wang et al., g-C3N4 composited TiO2 nanofibers were prepared by high voltage electrostatic spinning to improve photocatalytic efficiency. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04890-7

    Article  Google Scholar 

  5. H. Guo et al., Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin porous graphitic carbon nitride for boosted photocatalytic reactive oxygen species generation. Chem. Eng. J. 385, 123919 (2020)

    Article  CAS  Google Scholar 

  6. Z. Huang et al., Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2. Appl. Catal. B Environ. 164, 420–427 (2015)

    Article  CAS  Google Scholar 

  7. H. Bashir, X. Yi, J. Yuan, K. Yin, S. Luo, Highly ordered nanotube arrays embedded with nanorods for enhanced photocatalytic activity. J. Photochem. Photobiol A: Chem 382, 111930 (2019)

    Article  CAS  Google Scholar 

  8. K. Hu, R. Li, C. Ye, A. Wang, W. Wei, D. Hu, R. Qiu, K. Yan, Facile synthesis of Z-scheme composite of nanorod/nanosheet efficient for photocatalytic degradation of ciprofloxacin. J. Clean. Prod. J. 253, 120055 (2020)

    Article  CAS  Google Scholar 

  9. J. Fan, E.-Z. Liu, L. Tian, X.-Y. Hu, Q. He, T. Sun, Synergistic effect of N and Ni2+ on nanotitania in photocatalytic reduction of CO2. J. Environ. Eng. 137, 171–176 (2011)

    Article  CAS  Google Scholar 

  10. L. Sun, X. Zhao, X. Cheng, H. Sun, L. Yanlu, P. Li, W. Fan, Synergistic effects in La/N codoped TiO2 anatase (101) surface correlated with enhanced visible-light photocatalytic activity. Langmuir 28, 5882–5891 (2012)

    Article  CAS  Google Scholar 

  11. J. Huang et al., One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin. J. Hazard. Mater. 386, 121634 (2020)

    Article  CAS  Google Scholar 

  12. Y. Huang et al., Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: room-temperature preparation, hydrophilicity, and application for photocatalytic NOx removal. Appl. Catal. B Environ. 240, 122–131 (2019)

    Article  CAS  Google Scholar 

  13. P. Kumar, P. Kar, A.P. Manuel, S. Zeng, U.K. Thakur, K.M. Alam, Y. Zhang, R. Kisslinger, K. Cui, G.M. Bernard, V.K. Michaelis, Visible light driven photocatalysis using nanotube arrays sensitized by P-doped C3N4 quantum dots. Adv. Optic. Mater. 1901275, 1–15 (2019)

    Google Scholar 

  14. P. Kumar, U. Kumar, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patel, K. Shankar, Arrays of nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 137, 174–187 (2018)

    Article  CAS  Google Scholar 

  15. W. Wang, Q. Niu, G. Zeng, C. Zhang, D. Huang, 1D porous tubular capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B: Environ. 273, 119051 (2020)

    Article  CAS  Google Scholar 

  16. J. Wu, Y. Feng, D. Li, X. Han, J. Liu, Efficient photocatalytic CO2 reduction by PeO linked /-nanotubes Z-scheme composites. Energy 178, 168–175 (2019)

    Article  Google Scholar 

  17. J. Yu, Q. Li, S. Liu, M. Jaroniec, Ionic-liquid-assisted synthesis of uniform fluorinated B/C-codoped TiO2 nanocrystals and their enhanced visible-light photocatalytic activity. Chem. Eur. J. 19, 2433–2441 (2013)

    Article  CAS  Google Scholar 

  18. P. Simon, B. Pignon, B. Miao, S. Coste-Leconte, Y. Leconte, S. Marguet, P. Jegou, B. Bouchet-Fabre, C.C. Reynaud, N. Herlin-Boime, N-doped titanium monoxide nanoparticles with TiO2 rock-salt structure, low energy band gap, and visible light activity. Chem. Mater. 22, 3704–3711 (2010)

    Article  CAS  Google Scholar 

  19. V.C. Stengl, V. Houskova, S. Bakardjieva, N. Murafa, Photocatalytic activity of boron-modified titania under UV and visible-light illumination. ACS Appl. Mater. Interfaces 2, 575–580 (2010)

    Article  CAS  Google Scholar 

  20. P. Kumar et al., Noble metal free, visible light driven photocatalysis using TiO2 nanotube arrays sensitized by P-doped C3N4 quantum dots. Adv. Opt. Mater. 8, 1901275 (2020)

    Article  CAS  Google Scholar 

  21. G. Marotta, M.G. Lobello, C. Anselmi, G. Barozzino-Consiglio, M. Calamante, A. Mordini, M. Pastore, F. De Angelis, An integrated experimental and theoretical approach to the spectroscopy of organic-dye-sensitized heterointerfaces: disentangling the effects of. ChemPhysChem 15, 1116–1125 (2014)

    Article  CAS  Google Scholar 

  22. E. Ronca, G. Marotta, M. Pastore, F.D. Angelis, Effect of sensitizer structure and protonation on charge generation in dye-sensitized solar cells. Indian J. Chem. Sect. A 118, 16927 (2014)

    CAS  Google Scholar 

  23. J.R. Swierk, N.S. Mccool, T.P. Saunders, G.D. Barber, T.E. Mallouk, Effects of electron trapping and protonation on the efficiency of water-splitting dye-sensitized solar cells. J. Am. Chem. Soc. 136(31), 10974–10982 (2014)

    Article  CAS  Google Scholar 

  24. S.K. Park, H. Shin, Effect of HCl and H2SO4 treatment of powder on the photosensitized degradation of aqueous. J. Nanosci. Nanotechnol. 14, 8122–8128 (2014)

    Article  CAS  Google Scholar 

  25. Z. Wang, T. Yamaguchi, H. Sugihara, Significant efficiency improvement of the black dye-sensitized solar cell through protonation of films. Langmuir 5, 4272–4276 (2005)

    Article  Google Scholar 

  26. Z. Wang, G. Zhou, Effect of surface protonation of on charge recombination and conduction band edge movement in dye-sensitized solar cells. J. Phys. Chem. C 113, 15417–15421 (2009)

    Article  CAS  Google Scholar 

  27. J. Li, M. Zhang, Q. Li, J. Yang, Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst. Appl. Surf. Sci. 391, 184–193 (2017)

    Article  CAS  Google Scholar 

  28. X. Li, J. Xiong, Y. Xu, Z. Feng, J. Huang, Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions. Cuihua Xuebao/Chin. J. Catal. 40, 424–433 (2019)

    Article  CAS  Google Scholar 

  29. J. Yu, S. Wang, J. Low, W. Xiao, Enhanced photocatalytic performance of direct Z-scheme g-C3N4/TiO2 photocatalyst for decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890 (2013)

    Article  CAS  Google Scholar 

  30. S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale 6, 4830–4842 (2014)

    Article  CAS  Google Scholar 

  31. Y. Si, Z. Sun, L. Huang, M. Chen, L. Wu, A ‘ship-in-a-bottle’ strategy to fabricate highly crystallized nanoporous graphitic g-C3N4 microspheres under pressurized conditions. J. Mater. Chem. A 7, 8952–8959 (2019)

    Article  CAS  Google Scholar 

  32. L.C. Sim et al., In situ growth of g-C3N4 on TiO2 nanotube arrays: construction of heterostructures for improved photocatalysis properties. J. Environ. Chem. Eng. 8, 103611 (2020)

    Article  CAS  Google Scholar 

  33. Z. Sun, S. Fang, Y.H. Hu, 3D graphene materials: from understanding to design and synthesis control. Chem. Rev. 120, 10336–10453 (2020)

    Article  CAS  Google Scholar 

  34. M.B. Tahir, M. Sagir, K. Shahzad, Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite. J. Hazard. Mater. 363, 205–213 (2019)

    Article  CAS  Google Scholar 

  35. L. Yang et al., Co3O4 imbedded g-C3N4 heterojunction photocatalysts for visible-light-driven hydrogen evolution. Renew. Energy 145, 691–698 (2020)

    Article  CAS  Google Scholar 

  36. J. Yu, J. Zou, P. Xu, Q. He, Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes. J. Clean. Prod. 251, 119744 (2020)

    Article  CAS  Google Scholar 

  37. Z. Zafar, I. Ali, S. Park, J.O. Kim, Effect of different iron precursors on the synthesis and photocatalytic activity of Fe–TiO2 nanotubes under visible light. Ceram. Int. 46, 3353–3366 (2020)

    Article  CAS  Google Scholar 

  38. C. Zhou et al., Distorted polymeric carbon nitride via carriers transfer bridges with superior photocatalytic activity for organic pollutants oxidation and hydrogen production under visible light. J. Hazard. Mater. 386, 121947 (2020)

    Article  CAS  Google Scholar 

  39. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C3N4 /TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B: Environ. 187, 47–58. https://doi.org/10.1016/j.apcatb.2016.01.026 (2016)

    Article  CAS  Google Scholar 

  40. L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Synthesis of core-shell TiO2 @g-C3 N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light. Appl. Surface Sci. 430, 263–272. https://doi.org/10.1016/j.apsusc.2017.07.282 (2018)

    Article  CAS  Google Scholar 

  41. K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, J. Lu, Synergetic Effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunction. ACS Appl. Mat. Interfaces 9(13), 11577–11586 https://doi.org/10.1021/acsami.6b16191 (2017)

    Article  CAS  Google Scholar 

  42. R. Hao, G. Wang, C. Jiang, H. Tang, Q. Xu, In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl. Surface Sci. 411, 400–410. https://doi.org/10.1016/j.apsusc.2017.03.197 (2017)

    Article  CAS  Google Scholar 

  43. L. Hu, J. Yan, C. Wang, B. Chai, J. Li, Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance. Chinese J. Catal. 40(3), 458–469 https://doi.org/10.1016/S1872-2067(18)63181-X (2019)

    Article  CAS  Google Scholar 

  44. Z. Lu, L. Zeng, W. Song, Z. Qin, D. Zeng, C. Xie, In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl. Catal. B: Environ. 202, 489–499 https://doi.org/10.1016/j.apcatb.2016.09.052 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Sun, T., Xu, J. et al. The pre-acidizing corrosion on the surface of TiO2 enhanced the photocatalytic activity of g-C3N4/TiO2. J Mater Sci: Mater Electron 32, 21083–21092 (2021). https://doi.org/10.1007/s10854-021-06608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06608-9

Navigation