Skip to main content

Advertisement

Log in

Up-conversion luminescence and near-infrared quantum cutting of Ho3+/Yb3+ co-doped hexagonal NaGdF4 phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, Ho3+/Yb3+ co-doped Sodium Gadolinium Fluoride (NaGdF4) phosphors were synthesized by a facile and efficient hydrothermal method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy spectrum (EDS), and photoluminescence (PL). The results of XRD and SEM indicated that the prepared NaGdF4 samples have the hexagonal structure and good orientation in the case of changing the concentration of Yb3+. The results of pump power dependence of up-conversion intensity indicated that the energy transfer mechanism from Yb3+ to Ho3+ is a two-photon process. The energy transfer between Ho3+ and Yb3+ under 448 nm excitation was determined by PL spectra and fluorescence lifetimes. All the results proved that the doping of Yb3+ ions can effectively improve the up-conversion luminescence of NaGdF4 phosphors and achieve quantum cutting efficiency of up to 179.8%. Overall, NaGdF4:Ho3+/Yb3+ have potential application in the field of optoelectronic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Yadav, A. Singh, A. Bahadur, T. Yadav, R. Yadav, S. Rai, Effect of Li+ on frequency upconversion and intrinsic optical bistability of Ho3+/Yb3+ co-doped gadolinium tungstate phosphor. J. Phys. Chem. Solids 119, 138–146 (2018)

    Article  CAS  Google Scholar 

  2. P.K. Shahi, R. Prakash, S.B. Rai, Impact of viscosity on photo-induced bimodal emission, decay profile and energy transfer in lanthanide based hybrid nanostructure. Opt. Mater. 107, 110086 (2019)

    Article  CAS  Google Scholar 

  3. X. Liang, J. Fan, Y. Zhao, M. Cheng, X. Wang, R. Jin, T. Sun, A targeted drug delivery system based on folic acid-functionalized upconversion luminescent nanoparticles. J. Biomater. Appl. 31, 1247–1256 (2017)

    Article  CAS  Google Scholar 

  4. D. Zhang, M. Ding, B. Dong, Y. Zhen, Q. Chang, One-pot hydrothermal synthesis, formation mechanism and multicolor up-/down-converted luminescence for anti-counterfeiting and fingerprint detection. Ceram. Int. 45, 20307–20315 (2019)

    Article  CAS  Google Scholar 

  5. W. Ho, G. Li, J. Liu, Z. Lin, B. You, C. Ho, Photovoltaic performance of textured silicon solar cells with MAPbBr3 perovskite nanophosphors to induce luminescent down-shifting. Appl. Surf. Sci. 436, 927–933 (2018)

    Article  CAS  Google Scholar 

  6. Z. Li, Y. Zhang, Facile synthesis of lanthanide nanoparticles with paramagnetic, down- and up-conversion properties. Nanoscale 2, 1240–1243 (2020)

    Article  Google Scholar 

  7. D. Chen, Y. Yu, Y. Wang, P. Huang, F. Weng, Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics. J. Phys. Chem. C 113, 6406–6410 (2009)

    Article  CAS  Google Scholar 

  8. W. Liu, J. Zhang, Z. Hao, G. Xiang, L. Zhang, X. Zhang, G. Pan, Y. Luo, H. Zhao, H. Wu, Near-infrared quantum cutting and energy transfer mechanism in Lu2O3:Tm3+/Yb3+ phosphor for high-efficiency photovoltaics. J. Mater. Sci. Mater. Electron. 28, 8017–8022 (2017)

    Article  CAS  Google Scholar 

  9. X. Yu, M. Gao, J. Li, D. Li, N. Cao, Z. Jiang, A. Hao, P. Zhao, J. Fan, Near infrared to visible upconversion emission in Er3+/Yb3+ co-doped NaGd(WO4)2 nanoparticles obtained by hydrothermal method. J. Lumin. 154, 111–115 (2014)

    Article  CAS  Google Scholar 

  10. L. Arrts, B.M. van der Ende, A. Meijerink, Downconversion for solar cells in NaYF4:Er, Yb. J. Appl. Phys. 106, 23522 (2009)

    Article  CAS  Google Scholar 

  11. T. Dennis, U. Michaeal, Upconversion luminescence properties of NaYF4:Yb/Er nanoparticles codoped with Gd3+. J. Phys. Chem. C 119, 3363–3373 (2015)

    Article  CAS  Google Scholar 

  12. D. Teweldebrhan, A. Balandina, Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 94, 61905 (2009)

    Article  CAS  Google Scholar 

  13. X.Y. Wang, C.Y. Zhang, D. Hu, W.B. Li, H. Lin, F.W. Zeng, C. Li, Z.M. Su, Influence of Yb ions concentration on Ho:BaY2F8 crystals emission in the range of 1–3 μm. Opt. Mater. 109, 110141 (2020)

    Article  CAS  Google Scholar 

  14. S. Das, A. Reddy, G. Prakash, Strong green upconversion emission from Er3+-Yb3+ co-doped KCaBO3 phosphor. Chem. Phys. Lett. 504, 206 (2011)

    Article  CAS  Google Scholar 

  15. Y. Dwivedi, A. Rai, S.B. Rai, Energy transfer in Er:Eu:Yb co-doped tellurite glasses: Yb as enhancer and quencher. J. Lumin. 129, 629–633 (2009)

    Article  CAS  Google Scholar 

  16. Y. Dwivedi, A. Bahadur, S.B. Rai, Optical avalanche in Ho, Yb:Gd2O3 nanocrystals. J. Appl. Phys. 110, 043103 (2011)

    Article  CAS  Google Scholar 

  17. N. Sangeetha, F. van Veggel, Lanthanum silicate and lanthanum zirconate nanoparticles Co-doped with Ho3+ and Yb3+:matrix-dependent red and green upconversion emissions. J. Phys. Chem. C 113, 14702 (2009)

    Article  CAS  Google Scholar 

  18. X. Wang, Y. Hou, J. Qu, Up-conversion photoluminescence properties and energy transfer process of Ho3+, Yb3+ Co-doped BaY2F8 fine fibers. J. Lumin. 212, 154–159 (2019)

    Article  CAS  Google Scholar 

  19. A. Pandey, V. Rai, R. Dey, Enriched green upconversion emission in combustion synthesized Y2O3:Ho3+, Yb3+ phosphor. Mater. Chem. Phys. 139, 483 (2013)

    Article  CAS  Google Scholar 

  20. X. Tan, S. Xu, F. Liu, Highly efficient up-conversion green emission in Ho/Yb co-doped yttria-stabilized zirconia single crystals. J. Lumin. 209, 95–101 (2019)

    Article  CAS  Google Scholar 

  21. L. Aarts, B. van der Ende, A. Meijerink, Downconversion for solar cells in NaYF4:Er, Yb. J. Appl. Phys. 106, 023522 (2009)

    Article  CAS  Google Scholar 

  22. J. Zhang, H. Xia, Y. Jiang, S. Yang, X. Gu, J. Zhang, H. Jiang, B. Chen, Growth and downconversion luminescence of Ho3+/Yb3+ codoped α-NaYF4 single crystals by the Bridgman method using a KF flux. Cryst. Res. Technol. 50, 574–579 (2015)

    Article  CAS  Google Scholar 

  23. P. Babu, I. Martín, V. Lavín, Quantum cutting and near-infrared emissions in Ho3+/Yb3+ codoped transparent glass-ceramics. J. Lumin. 226, 117424 (2020)

    Article  CAS  Google Scholar 

  24. K. Teshima, S. Lee, N. Shikine, T. Wakabayashi, S. Oishi, Flux growth of highly crystalline NaYF4:Ln (Ln = Yb, Er, Tm) crystals with upconversion fluorescence. Cryst. Growth. Des. 11, 995–999 (2011)

    Article  CAS  Google Scholar 

  25. S. Hu, Y. Liu, X. Wu, Z. Tang, Z. Li, H. Yan, Z. Chen, P. Hu, Y. Yu, Remarkable red-shift of upconversion luminescence and anti-ferromagnetic coupling in NaLuF4:Yb3+/Tm3+/Gd3+/Sm3+ bifunctional microcrystals. J. Rare Earth 34, 166–173 (2016)

    Article  CAS  Google Scholar 

  26. A. Kumara, M. Kumarb, V. Bhatt, ZnS microspheres-based photoconductor for UV light-sensing applications. Chem. Phys. Lett. 763, 138162 (2021)

    Article  CAS  Google Scholar 

  27. V. Kumar, D. Raj, S.K. Ravi, K. Choubey, S.K. Chakarvarti, Solvothermal growth of ultrathin nonporous nickel oxide nanosheets for ethanol sensing. J. Mater. Sci. Mater. Electron. 32, 818–826 (2021)

    Article  CAS  Google Scholar 

  28. S. Oshio, K. Kitamura, T. Shigeta, S. Horii, T. Matsuoka, S. Tanaka, H. Kobayashi, Firing technique for preparing a BaMgAl10O17:Eu2+ phosphor with controlled particle shape and size. J. Electrochem. Soc. 146, 392–399 (1999)

    Article  CAS  Google Scholar 

  29. M. Chen, T. Sun, H. Chen, Y. Zhang, L. Wu, Y. Kong, J. Xu, Synthesis and luminescence properties of Yb3+ and Er3+ doped KLa(WO4)2 nanoparticles. J. Solid State Chem. 183, 2161 (2010)

    Article  CAS  Google Scholar 

  30. R.K. Choubeya, P. Sena, S. Karb, G. Bhagavannarayanac, K.S. Bartwalb, Effect of codoping on crystalline perfection of Mg:Cr:LiNbO3 crystals. Solid. State. Commun. 140, 120–124 (2006)

    Article  CAS  Google Scholar 

  31. S. Medhekar, R. Kumar, S. Mukherjee, R.K. Choubey, Study of nonlinear refraction of oganic dye by Z-scan technique using He-Ne laser. AIP Conf. Proc. 1512, 470 (2013)

    Article  CAS  Google Scholar 

  32. J.C. Wua, Z.B. Chena, R.K. Choubey, C.W. Lana, On the study of zinc doping in congruent LiTaO3 crystals. Mater. Chem. Phys. 133, 813–817 (2012)

    Article  CAS  Google Scholar 

  33. S. Kara, R.K. Choubeyb, P. Senb, G. Bhagavannarayanac, K.S. Bartwal, Studies on codoping behavior of Nd:Mg:LiNbO3 crystals. Phys. B 393, 37–42 (2007)

    Article  CAS  Google Scholar 

  34. K.V. Krishnaiah, C.K. Jayasankar, S. Chaurasia, C.G. Murali, L.J. Dhareshwar, Preparation and characterization of Yb3+ doped metaphosphate glasses for high energy and high power laser applications. Sci. Adv. Mater. 5, 276–284 (2013)

    Article  CAS  Google Scholar 

  35. N.J. Zhou, S. Vegiraju, X. Yu, E.F. Manley, M.R. Butler, M.J. Leonardi, P. Guo, W. Zhao, Y. Hu, K. Prabakaran, R.P.H. Chang, M.A. Ratner, L.X. Chen, A. Facchetti, M.C. Chen, T.J. Marks, Diketopyrrolopyrrole (DDP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells. J. Mater. Chem. C 3, 8932–8941 (2015)

    Article  CAS  Google Scholar 

  36. Z. Xia, S. Miao, M. Chen, M. Molokeev, Q. Liu, Structure, crystallographic sites, and tunable luminescence properties of Eu2+ and Ce3+/Li+ activated Ca16.5Sr0.35SiO4 phosphors. Inorg. Chem. 54, 7684–7691 (2015)

    Article  CAS  Google Scholar 

  37. J. Wang, H. Zhang, B. Lei, Z. Xia, H. Dong, Y. Liu, M. Zheng, Y. Xiao, Enhanced photoluminescence and phosphorescence properties of red CaAlSiN3:Eu2+ phosphor via simultaneous uv-nir stimulation. J. Mater. Chem. C 3, 4445–4451 (2015)

    Article  CAS  Google Scholar 

  38. D.C. Yu, X.Y. Huang, S. Ye, Q.Y. Zhang, Efficient first-order resonant near-infrared quantum cutting in NaYF4:Ho3+, Yb3+. J. Alloys Compd. 509, 9919–9923 (2011)

    Article  CAS  Google Scholar 

  39. C.G. Wang, J.Z. Zhang, H.P. Xia, Z.G. Feng, D.S. Jiang, J. Zhang, X.M. Gu, J.L. Zhang, H.C. Jiang, B.J. Chen, Cooperative downconversion of Er3+/Yb3+ co-doped α-NaYF4 single crystals. Optik 127, 2608–2612 (2016)

    Article  CAS  Google Scholar 

  40. J. Hong, L. Lin, X. Li, Z. Feng, L. Huang, Q. Qin, Z. Zheng, Plasmon-enhanced broad-band quantum-cutting of NaBaPO4:Eu2+, Er3+ phosphors with silver nano-particles. J. Rare Earth 38, 1151–1157 (2020)

    Article  CAS  Google Scholar 

  41. C. Lu, C. Yeh, S. Som, Synthesis of Tb3+-Yb3+ coactivated CeO2 phosphors for two-photon assisted quantum cutting applications. Chem. Phys. Lett. 748, 137383 (2020)

    Article  CAS  Google Scholar 

  42. J. Zhang, Y. Wang, L. Guo, P. Dong, Up-conversion luminescence and near-infrared quantum cutting in Y6O5F8:RE3+ (RE=Yb, Er, and Ho) with controllable morphologies by hydrothermal synthesis. Daltont Trans. 42, 3542–3551 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (2016M602746), the National College Students' innovation and entrepreneurship training program (201910710572), the Fundamental Research Funds for the Central Universities (CHD300102310501) and the National Natural Science Foundation of China (61604016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Li, H., Li, X. et al. Up-conversion luminescence and near-infrared quantum cutting of Ho3+/Yb3+ co-doped hexagonal NaGdF4 phosphors. J Mater Sci: Mater Electron 32, 21032–21043 (2021). https://doi.org/10.1007/s10854-021-06588-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06588-w

Navigation