Skip to main content
Log in

Effects of eucommia gum filler on the dielectric properties and chemical resistances of addition-cure liquid silicone rubber

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is of great interest and remains a challenge to simultaneously improve the low dielectric properties and chemical resistances of addition-cure liquid silicone rubber (ALSR). In this work, we proposed an efficient approach to address this issue by filling silicone-modified Eucommia ulmoides gum nanofiller (SEUG) into ALSR. By adding 5 wt% SEUG, the dielectric constant of the SEUG/ALSR composite rubber was significantly lower than that of neat ALSR both at 102 Hz, 103 Hz, and 104 Hz. Simultaneously, the SEUG/ALSR composite rubber exhibited better mechanical and insulation properties than the neat ALSR after HCl, NaCl, and oil resistance tests. Our findings demonstrated the great potential for fabricating silicone rubber with low dielectric properties and erosion resistance by the utilization of natural biomass rubber material, endowing it with excellent mechanical performance and degradability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V. Kumaresan, S. Sreekantan, M. Devarajan, K. Mohamed, J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-020-04864-9

    Article  Google Scholar 

  2. W. Fang, X. Zeng, X. Lai, H. Li, W. Chen, Thermochim. Acta (2015). https://doi.org/10.1016/j.tca.2015.02.011

    Article  Google Scholar 

  3. C. Xie, X. Lai, H. Li, X. Zeng, Polym. Degrad. Stab. (2019). https://doi.org/10.1016/j.polymdegradstab.2019.06.014

    Article  Google Scholar 

  4. Y. Liu, C. Ma, Y. Li, Z. Yin, J. Su, J. Gao, Plast. Rubber Compos. (2018). https://doi.org/10.1080/14658011.2018.1468586

    Article  Google Scholar 

  5. H. Li, Y. Li, T. Wu, X. Liao, T. Liu, X. Lai, X. Zeng, Surf. Interfaces (2019). https://doi.org/10.1016/j.surfin.2018.11.009

    Article  Google Scholar 

  6. L. Guo, X. Yang, F. Dong, Y. Qian, J. Guo, X. Lin et al., Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122868

    Article  Google Scholar 

  7. Y. Li, C. Zang, Y. Zhang, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122734

    Article  Google Scholar 

  8. Y. Li, X. Zeng, X. Lai, H. Li, W. Fang, Polym. Test. (2017). https://doi.org/10.1016/j.polymertesting.2017.08.017

    Article  Google Scholar 

  9. W. Fang, X. Lai, H. Li, W. Chen, X. Zeng, L. Zhang, S. Yang, Polym. Test. (2014). https://doi.org/10.1016/j.polymertesting.2014.04.007

    Article  Google Scholar 

  10. Y. Zhang, X. Zeng, X. Lai, H. Li, X. Huang, Polym. Test. (2018). https://doi.org/10.1016/j.polymertesting.2018.05.005

    Article  Google Scholar 

  11. J. Qiu, X. Lai, W. Fang, H. Li, X. Zeng, Polym. Degrad. Stab. (2017). https://doi.org/10.1016/j.polymdegradstab.2017.08.005

    Article  Google Scholar 

  12. C. Xie, X. Zeng, W. Fang, X. Lai, H. Li, Polym. Degrad. Stab. (2017). https://doi.org/10.1016/j.polymdegradstab.2017.07.015

    Article  Google Scholar 

  13. T. Liu, X. Zeng, W. Fang, X. Lai, H. Li, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.06.117

    Article  Google Scholar 

  14. T. Wu, X. Lai, F. Liu, H. Li, X. Zeng, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.08.021

    Article  Google Scholar 

  15. M. Sarkarat, M. Lanagan, D. Ghosh, A. Lottes, K. Budd, R. Rajagopalan, Mater. Today Commun. (2020). https://doi.org/10.1016/j.mtcomm.2020.100947

    Article  Google Scholar 

  16. L. Yu, A. Skov, Int. J. Smart. Nano Mater. (2015). https://doi.org/10.1080/19475411.2015.1119216

    Article  Google Scholar 

  17. D.T. Vaimakis-Tsogkas, D.G. Bekas, T. Giannakopoulou, N. Todorova et al., Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2018.11.011

    Article  Google Scholar 

  18. I. Rezaeian, P. Zahedi, M.S. Loghmani, M. Shahzamani, Plast., Rubber Compos. (2009). https://doi.org/10.1179/174328909X435401

    Article  Google Scholar 

  19. S. Azizi, G. Momen, C. Ouellet-Plamondon, E. David, Polym. Test. (2020). https://doi.org/10.1016/j.polymertesting.2019.106281

    Article  Google Scholar 

  20. D. Liu, L. Song, H. Song, J. Chen, Q. Tian, L. Chen et al., Compos. Sci. Technol. (2018). https://doi.org/10.1016/j.compscitech.2018.07.024

    Article  Google Scholar 

  21. D. Chen, Y. Liu, C. Huang, Polym. Degrad. Stab. (2012). https://doi.org/10.1016/j.polymdegradstab.2011.12.016

    Article  Google Scholar 

  22. P. Indumathy, B. Kothandaraman, Plast. Rub. Compos. (2020). https://doi.org/10.1080/14658011.2020.1718325

    Article  Google Scholar 

  23. I. Chiulan, D. Panaitescu, E. Radu, A.N. Frone et al., J. Mech. Behav. Biol. Mater. (2020). https://doi.org/10.1016/j.jmbbm.2019.103427

    Article  Google Scholar 

  24. J. Bai, X. Liao, E. Huang, Y. Luo, Q. Yang, Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.07.064

    Article  Google Scholar 

  25. C. Chen, Y. He, C. Liu, H. Xie, W. Yu, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03016-3

    Article  Google Scholar 

  26. J. Feng, Z. Liu, D. Zhang, Z. He, Z. Tao, Q. Guo, New Car Mater. (2019). https://doi.org/10.1016/S1872-5805(19)60011-9

    Article  Google Scholar 

  27. G. Wang, X. Liao, J. Yang, W. Tang, Y. Zhang, Q. Jiang, G. Li, Compos. Sci. Technol. (2019). https://doi.org/10.1016/j.compscitech.2019.107847

    Article  Google Scholar 

  28. M. Chang, Y. Li, L. Xu, W. Wang, C. Wang, R. Wang, J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-017-8198-2

    Article  Google Scholar 

  29. P. Song, J. Song, Y. Zhang, Compos. Part B: Eng. (2020). https://doi.org/10.1016/j.compositesb.2020.107979

    Article  Google Scholar 

  30. P. Liu, L. Li, L. Wang, T. Huang, Y. Yao, W. Xu, J. Alloys Compos. (2019). https://doi.org/10.1016/j.jallcom.2018.10.002

    Article  Google Scholar 

  31. Q. Chen, B. Xi, J. Zhang, H. Yang, X. Wang, M. Chi, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04213-w

    Article  Google Scholar 

  32. L.K. Namitha, S. Ananthakumar, M.T. Sebastian, J. Mater. Sci.: Mater. Electron. (2014). https://doi.org/10.1007/s10854-014-2479-9

    Article  Google Scholar 

  33. G. Boccalero, C. Jean-Mistral, M. Castellano, C. Boragno, Compos. Part B: Eng. (2018). https://doi.org/10.1016/j.compositesb.2018.03.021

    Article  Google Scholar 

  34. C. Li, H. Fan, T. Aziz, C. Bittencourt, L. Wu, D. Wang, A.C.S. Susta, Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.8b01212

    Article  Google Scholar 

  35. Y. Cheng, C. Lee, W. Hung, G. Chen, J. Fang, Surf. Coat. Technol. (2018). https://doi.org/10.1016/j.surfcoat.2018.06.071

    Article  Google Scholar 

  36. X. Wei, P. Peng, F. Peng, J. Dong, J. Agric. Food Chem. (2021). https://doi.org/10.1021/acs.jafc.0c07560

    Article  Google Scholar 

  37. B. Chen, Q. Wu, J. Li, K. Lin, D. Chen, C. Zhou, T. Wu, X. Luo, Y. Liu, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122323

    Article  Google Scholar 

  38. B.U. Kang, J.Y. Kim, J. Kim, S.S. Lee, M. Park, S. Lim, C.R. Choe, J. Appl. Polym. Sci. 79, 38–48 (2001)

    Article  CAS  Google Scholar 

  39. B.J. Rohde, K.M. Le, R. Krishnamoorti, M.L. Robertson, Macromolecules (2016). https://doi.org/10.1021/acs.macromol.6b01649

    Article  Google Scholar 

  40. D. Yang, Y. Ni, X. Kong, D. Gao, Y. Wang, T.L. Hu, Compos. Sci. Technol. (2019). https://doi.org/10.1016/j.compscitech.2019.04.016

    Article  Google Scholar 

  41. Y. Huang, X. Wei, L. Liu, H. Yu, J. Yang, Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.08.084

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. We thank LetPub (www. letpub. com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengpei Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Su, S., Wang, B. et al. Effects of eucommia gum filler on the dielectric properties and chemical resistances of addition-cure liquid silicone rubber. J Mater Sci: Mater Electron 32, 20548–20558 (2021). https://doi.org/10.1007/s10854-021-06566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06566-2

Navigation