Skip to main content
Log in

Boron-doped helical carbon nanotubes: lightweight and efficient microwave absorbers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Boron-doped helical carbon nanotubes (B-HCNTs) were obtained by annealing HCNTs under the boric oxide presence. The morphology and structure of HCNTs remained unchanged even after annealing and B-doping. HCNTs displayed excellent electromagnetic wave (EMW) absorption, judging by the corresponding optimal reflection loss and the absorption bandwidth values equal to − 47.86 dB and 3.20 GHz, respectively. Quick and straightforward synthesis process, excellent chemical stability and low density make our B-HCNTs promising as lightweight and efficient microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.H. Chen, Z.Y. Huang, Y. Huang, Y. Zhang, Z. Ge, B. Qin, Z.F. Liu, Q. Shi, P.H. Xiao, Y. Yang, T.F. Zhang, Y.S. Chen, Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017)

    Article  CAS  Google Scholar 

  2. L. Wang, X. Li, Q.Q. Li, Y.H. Zhao, R.H. Che, Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: as a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 10, 22602–22610 (2018)

    Article  CAS  Google Scholar 

  3. H.L. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, R.B. Wu, An electrical switch driven flexible electromagnetic absorber. Adv. Funct. Mater. 30, 1907251–1907258 (2019)

    Article  CAS  Google Scholar 

  4. Q.X. Yang, Y.Y. Shi, Y. Fang, Y.B. Dong, Q.Q. Ni, Y.F. Zhu, Y.Q. Fu, Construction of polyaniline aligned on magnetic functionalized biomass carbon giving excellent microwave absorption properties. Compos. Sci. Technol. 174, 176–183 (2019)

    Article  CAS  Google Scholar 

  5. X. Li, L.M. Yu, W.K. Zhao, Y.Y. Shi, L.J. Yu, Y.B. Dong, Y.F. Zhu, Y.Q. Fu, X.D. Liu, F.Y. Fu, Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem. Eng. J. 379, 122393–122401 (2020)

    Article  CAS  Google Scholar 

  6. F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, Z.W. Zhou, Graphene-based microwave absorbing composites: a review and prospectiv. Compos. Part B: Eng. 137, 260–277 (2018)

    Article  CAS  Google Scholar 

  7. X.J. Zeng, X.Y. Cheng, R.H. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020)

    Article  CAS  Google Scholar 

  8. K.Y. Li, H. Sun, X. Zhang, S. Zhang, H.W. Dong, C.L. Zhu, Y.J. Chen, Micro-nanospheres assembled with helically coiled nitrogen-doped carbon nanotubes: Fabrication and microwave absorption properties. Mater. Design 186, 108290 (2020)

    Article  CAS  Google Scholar 

  9. J.J. Zhang, Z.H. Li, X.S. Qi, X. Gong, R. Xie, C.Y. Deng, W. Zhong, Y.W. Du. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Comp. Part B 222, 109067(2021).

  10. F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 061301 (2012)

    Article  CAS  Google Scholar 

  11. K.K. Gupta, S.M. Abbas, A.C. Abhyankar, Carbon black/polyurethane nanocomposite- coated fabric for microwave attenuation in X & Ku-band (8–18 GHz) frequency range. J. Ind. Text. 46, 510–529 (2016)

    Article  CAS  Google Scholar 

  12. Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)

    Article  CAS  Google Scholar 

  13. G.L. Wu, Y.H. Cheng, Z.H. Yang, Z.R. Jia, H.J. Wu, L.J. Yang, H.L. Li, P.Z. Guo, H.L. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    Article  CAS  Google Scholar 

  14. Y. Wang, X. Gao, X.M. Wu, W.Z. Zhang, C.Y. Luo, P.B. Liu, Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber. Chem. Eng. J. 375, 121942–121951 (2019)

    Article  CAS  Google Scholar 

  15. W.H. Gu, J.Q. Sheng, Q.Q. Huang, G.H. Wang, J.B. Chen, G.B. Ji, Environmentally friendly and multifunctional shaddock peel based carbon aerogel for thermal insulation and microwave absorption. Nano-Micro Lett. 13, 102 (2021)

    Article  CAS  Google Scholar 

  16. B. Quan, W.H. Gu, J.Q. Sheng, X.F. Lv, Y.Y. Mao, L. Liu, X.G. Huang, Z.J. Tian, G.B. Ji, From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 495–1501 (2021)

    Article  CAS  Google Scholar 

  17. Y.H. Chen, Z.H. Huang, M.M. Lu, W.Q. Cao, J. Yuan, D.Q. Zhang, M.S. Cao, 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J. Mater. Chem. A 3, 12621–12625 (2015)

    Article  CAS  Google Scholar 

  18. D.P. Sun, Q. Zou, G.Q. Qian, C. Sun, W. Jiang, F.S. Li, Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta. Mater. 61, 5829–5834 (2013)

    Article  CAS  Google Scholar 

  19. Y.Q. Zhan, F.B. Meng, Y.J. Lei, R. Zhao, J.C. Zhong, X.B. Liu, One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4 hybrid material and its microwave electromagnetic properties. Mater. Lett. 65, 1737–1740 (2011)

    Article  CAS  Google Scholar 

  20. W. Zhou, L. Long, P. Xiao, Y. Li, H. Luo, W.D. Hu, R.M. Yin, Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties. Ceram. Int. 43, 5628–5634 (2017)

    Article  CAS  Google Scholar 

  21. Y.Q. Li, Y. Huang, S.H. Qi, L. Niu, Y.L. Zhang, Y.F. Wu, Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite. Appl. Surf. Sci. 258, 3659–3666 (2012)

    Article  CAS  Google Scholar 

  22. N.J. Tang, W. Zhong, C.T. Au, A. Gedanken, Y. Yang, Y.W. Du, Large-scale synthesis, annealing, purification, and magnetic properties of crystalline helical carbon nanotubes with symmetrical structures. Adv. Func. Mater. 17, 1542–1550 (2007)

    Article  CAS  Google Scholar 

  23. L.D. Li, L.F. Lu, S.H. Qi, Preparation, characterization and microwave absorption properties of porous nickel ferrite hollow nanospheres/helical carbon nanotubes/polypyrrole nanowires composites. J. Mater. Sci.: Mater. Electron. 29, 8513–8522 (2018)

    CAS  Google Scholar 

  24. S.C. Zhao, Z. Gao, C.Q. Chen, G.Z. Wang, B. Zhang, Y. Chen, J. Zhang, X. Li, Y. Qin, Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016)

    Article  CAS  Google Scholar 

  25. X. Jian, W. Tian, J.Y. Li, L.J. Deng, Z.W. Zho, L. Zhang, H.P. Lu, L.J. Yin, N. Mahmood, High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl. Mater. Interf. 11, 15869–15880 (2019)

    Article  CAS  Google Scholar 

  26. R. Wang, E.Q. Yang, X.S. Qi, R. Xie, S.J. Qin, C.Y. Deng, W. Zhong, Constructing and optimizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers. Appl. Surf. Sci. 516, 146159 (2020)

    Article  CAS  Google Scholar 

  27. W.H. Gu, X.Q. Cui, J. Zheng, J.W. Yu, Y. Zhao, G.B. Ji, Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Tech. 67, 265–272 (2021)

    Article  Google Scholar 

  28. X.Q. Cui, X.H. Liang, J.B. Chen, W.H. Gu, G.B. Ji, Y.W. Du, Customized unique core-shell Fe2N@N-doped carbon with tunable void space for microwave response. Carbon 156, 49–57 (2020)

    Article  CAS  Google Scholar 

  29. X.S. Qi, Y. Yang, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Large-scale synthesis, characterization and microwave absorption properties of carbon nanotubes of different helicities. J. Solid State Chem. 180, 2691–2697 (2009)

    Article  CAS  Google Scholar 

  30. M. Yang, N.A. Kotov, Nanoscale helices from inorganic materials. J. Mater. Chem. 21, 6775–6792 (2011)

    Article  CAS  Google Scholar 

  31. L. Liu, P.G. He, K.C. Zhou, T.F. Chen, Microwave absorption properties of helical carbon nanofibers-coated carbon fibers. AIP Adv. 3, 082112 (2013)

    Article  CAS  Google Scholar 

  32. W. In-Hwang, X. Chen, K. Kawabe, S. Motojima, Effect of external electromagnetic field and bias voltage on the chemical vapor growth of the carbon micro-coils and their properties. Mater. Sci. Eng. B 86, 1–6 (2001)

    Article  Google Scholar 

  33. L. Liu, P.G. He, T.F. Chen, K.C. Zhou, Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them. J. Mater. Sci. 49, 4379–4386 (2014)

    Article  CAS  Google Scholar 

  34. G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao, S.W. Lin, Y.H. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012)

    Article  CAS  Google Scholar 

  35. N.J. Tang, Y. Yang, K. Lin, W. Zhong, C.T. Au, Y.W. Du, Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties. J. Phys. Chem. C 112, 10061–10067 (2008)

    Article  CAS  Google Scholar 

  36. Y. Liu, N.J. Tang, W. Kuo, C.W. Jiang, J.F. Wen, Y.W. Du, N-Doped Helical Carbon Nanotubes: Single Helix Photoconductivity and Photoluminescence Properties. J. Phys. Chem. C 116, 14584–14590 (2012)

    Article  CAS  Google Scholar 

  37. Y. Ganesan, C. Peng, Y. Lu, L. Ci, A. Srivastava, P.M. Ajayan, J. Lou, Effect of Nitrogen Doping on the Mechanical Properties of Carbon Nanotubes. ACS Nano 4, 7637–7643 (2010)

    Article  CAS  Google Scholar 

  38. P. Ayala, R. Arenal, M. Rummeli, A. Rubio, T. Pichler, The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48, 575–586 (2010)

    Article  CAS  Google Scholar 

  39. Y.H. Cheng, Y.Y. Tian, X.Z. Fan, J.G. Liu, C.W. Yan, Boron Doped Multi-walled Carbon Nanotubes as Catalysts for Oxygen Reduction Reaction and Oxygen Evolution Reactionin in Alkaline Media. Electrochim. Acta 143, 291–296 (2014)

    Article  CAS  Google Scholar 

  40. L.J. Yang, S.J. Jiang, Y. Zhao, L. Zhu, S. Chen, X.Z. Wang, Q. Wu, J. Ma, Y.W. Ma, Z. Hu, Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 50, 7132–7135 (2011)

    Article  CAS  Google Scholar 

  41. Z.H. Sheng, H.L. Gao, W.J. Bao, F.B. Wang, X.H. Xia, Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22, 390–395 (2012)

    Article  CAS  Google Scholar 

  42. L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Nitrogen- and Boron-Doped Double Walled Carbon Nanotubes. ACS Nano 1, 494–500 (2007)

    Article  CAS  Google Scholar 

  43. B. Anand, R. Podila, P. Ayala, L. Oliveira, R. Philip, S.S.S. Sai, A.A. Zakhidovf, A.M. Ra, Nonlinear optical properties of boron doped single-walled carbon nanotubes. Nanoscale 5, 7271–7276 (2013)

    Article  CAS  Google Scholar 

  44. F. Wu, A.M. Xie, M.X. Sun, Y. Wang, M.Y. Wang, Reduced graphene oxide (RGO) modified spongelike polypyrrole (ppy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 3, 14358–14369 (2015)

    Article  CAS  Google Scholar 

  45. X.F. Liu, X.R. Cui, Y.X. Chen, X.J. Zhang, R.H. Yu, G.S. Wang, H. Ma, Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 95, 870–878 (2015)

    Article  CAS  Google Scholar 

  46. E. Michielssen, J.M. Sajer, S. Ranjithan, R. Mittra, Design of lightweight, broadband microwave absorbers using genetic algorithms. IEEE Trans. Microw. Theory Tech. 41, 1024–1031 (1993)

    Article  CAS  Google Scholar 

  47. A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, S.A.A. Hamid, Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92, 876–882 (2002)

    Article  CAS  Google Scholar 

  48. Y.F. Wang, D.L. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber. ACS Appl. Mater. Interfaces 7, 26226–26234 (2015)

    Article  CAS  Google Scholar 

  49. S.U. Rehman, J.M. Wang, Q.H. Luo, M.Z. Sun, L. Jiang, Q. Han, J.C. Liu, H. Bi, Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 373, 122–130 (2019)

    Article  CAS  Google Scholar 

  50. P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He, W.H. Huang, J.H. Luo, Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020)

    Article  CAS  Google Scholar 

  51. S. Gao, G.S. Wang, L. Guo, S.H. Yu, Tunable and ultraefficient microwave absorption properties of trace n-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, 1906668 (2020)

    Article  CAS  Google Scholar 

  52. P.S. Nagasree, K. Ramji, M.K. Naidu, T.C. Shami, X-band radar-absorbing structures based on MWCNTs/NiZn ferrite nanocomposites. Plast. Rubber Compos. 50, 71–82 (2021)

    Article  CAS  Google Scholar 

  53. Y. Wang, X.C. Di, Z. Lu, Controllable construction design of Co@C@MWCNTs interpenetrating composite with tunable enhanced electromagnetic wave absorption. J. Mater. Sci.: Mater. Electron 32, 1061–1072 (2021)

    CAS  Google Scholar 

  54. M.M. Ren, F.X. Li, B.H. Wang, J.X. Wei, Q.J. Yu, Preparation and electromagnetic wave absorption properties of carbon nanotubes loaded Fe3O4 composites. J. Mag. Mag. Mater 513, 167259 (2020)

    Article  CAS  Google Scholar 

  55. H. Tang, X. Jian, B. Wu, S.Y. Liu, Z.C. Jiang, X.N. Chen, W.Q. Lv, W.D. He, W. Tian, Y.F. Wei, Y.Q. Gao, T. Chen, G. Li, Fe3C/helical carbon nanotube hybrid: Facile synthesis and spininduced enhancement in microwave-absorbing properties. Comp. Part B 107, 51–58 (2016)

    Article  CAS  Google Scholar 

  56. J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia, Q.S. Wu, M. Wang, Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012)

    Article  CAS  Google Scholar 

  57. B. Qu, C.L. Zhu, C.Y. Li, X.T. Zhang, Y.J. Chen, Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8, 3730–3735 (2016)

    Article  CAS  Google Scholar 

  58. P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, Z.X. Guang, Synthesis of light weight N-doped graphene foams with open reticular structure for high efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019)

    Article  CAS  Google Scholar 

  59. M. Wu, A.K. Darboe, X.S. Qi, R. Xie, S.J. Qin, C.Y. Deng, G.L. Wu, W. Zhong, Optimization, selective and efficient production of CNTs/CoxFe3-xO4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 8, 11936–11949 (2020)

    Article  CAS  Google Scholar 

  60. L. Long, E.Q. Yang, X.S. Qi, R. Xie, Z.C. Bai, S.J. Qin, C.Y. Deng, W. Zhong, Positive and reverse core/shell structure CoxFe3–xO4/MoS2 and MoS2/CoxFe3–xO4 nanocomposites: selective production and outstanding electromagnetic absorption comprehensive performance. ACS Sustain. Chem. Eng. 8, 613–623 (2020)

    Article  CAS  Google Scholar 

  61. H. Li, S.S. Bao, Y.M. Li, Y.Q. Huang, J.Y. Chen, H. Zhao, Z.Y. Jiang, Q. Kuang, Z.X. Xie, Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk-shell structures. ACS Appl. Mater. Interfaces 10, 8839–28849 (2018)

    Google Scholar 

  62. S.S. Dai, Y. Cheng, B. Quan, X.H. Liang, W. Liu, Z.H. Yang, G.B. Ji, Y.W. Du, Porous- carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale 10, 6945–6953 (2018)

    Article  CAS  Google Scholar 

  63. H.J. Wei, X.W. Yin, X. Li, M.H. Li, X.L. Dang, L.T. Zhang, L.F. Cheng, Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon 147, 276–283 (2019)

    Article  CAS  Google Scholar 

  64. P.B. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016)

    Article  CAS  Google Scholar 

  65. X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang, C.L. Zhu, S. Zhang, Y.J. Chen, CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2020)

    Article  CAS  Google Scholar 

  66. F.Y. Wang, Y.Q. Sun, D.R. Li, B. Zhong, Z.G. Wu, S.Y. Zuo, D. Yan, R.F. Zhuo, J.J. Feng, P.X. Yan, Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 134, 264–273 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Science and Technology Foundation of Guizhou Province (No. LH [2014]7407). Partial support was also from Professor Foundation of Xingyi Normal University for Nationalities (No. 19XYJS06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhong.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hao, Y. & Zhong, W. Boron-doped helical carbon nanotubes: lightweight and efficient microwave absorbers. J Mater Sci: Mater Electron 32, 26161–26172 (2021). https://doi.org/10.1007/s10854-021-06560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06560-8

Navigation