Skip to main content
Log in

Impact of sulphur-containing compounds on the electrochemical capabilities of spinel carbon-coated Sb2SnS4 nano-sheets as alternative anodes in lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, three different samples of spinel carbon@Sb2SnS4 (C@S) sulphide were successfully synthesized via simple hydrothermal technique using L-cysteine (L-cyst.), thioacetic acid (TAA) and thioacetamide (TAM) compounds as sulphur sources. Physical and surface characterizations for the synthesized sulphide powders, including X-ray diffraction (XRD), field emission electron microscope (FE-SEM), energy dispersive spectroscopy (EDS) and XPS techniques were carried out. The XRD results confirmed the formation of ternary sulphide Sb2SnS4 in the spinel cubic phase associated with graphite and minor phases of binary sulphides. The microstructure investigation of carbon-coated Sb2SnS4/TAA (C@S/TAA) revealed two-dimensional thin sheets collected as bundles that correspond to ternary sulphide phase, while small bright grains are related to the binary sulphides and oxides. Moreover, the existence of Sb3+ and Sn4+ was confirmed from the XPS double peaks of Sb3d and Sn3d orbitals. Galvanostatic cycling of the assembled cells indicated that C@S/TAA anode delivered the maximum discharge capacity of about 880 mA g−1, while the C@S/L-cyst. cell possessed the lowest discharge capacity of about 772 mAh g−1. Finally, the cell with C@S/TAA anode displayed the highest diffusion coefficient of Li+ ions and best rate capability performance due to the unique two-dimensional thin sheets-like morphology of Sb2SnS4 hybridized with carbon nanoplates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Kim, S. Chae, J. Ma, M. Ko, J. Cho, Fast-charging high-energy lithium-ion batteries via simplantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 8, 812 (2017)

    Article  CAS  Google Scholar 

  2. A.Y. Shenouda, M.M.S. Sanad, Synthesis, characterization and electrochemical performance optimization of Li2NixFe1-xSiO4 cathode materials for lithium ion batteries. Bull. Mater. Sci. 40, 1055–1060 (2017)

    Article  CAS  Google Scholar 

  3. S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sour. 257, 421–443 (2014)

    Article  CAS  Google Scholar 

  4. P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium-ion batteries. J. Mater. Chem. A 3, 2454–2484 (2015)

    Article  CAS  Google Scholar 

  5. Y. Jiang, M. Wei, J. Feng, Y. Ma, S. Xiong, Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 9, 1430–1438 (2016)

    Article  Google Scholar 

  6. Z. Lin, Z. Min, W. Chen, F. Min, H. Wu, S. Wang, C. Feng, Y. Zhang, NiCo2S4/carbon nanotube composites as anode material for lithium-ion batteries. J. Electron. Mater. 48, 8138–8148 (2019)

    Article  CAS  Google Scholar 

  7. H. Zhang, J. Liu, X. Lin, T. Han, M. Cheng, J. Long, J. Li, A novel binary metal sulfide hybrid Li-ion battery anode: three-dimensional ZnCo2S4/NiCo2S4 derived from metal-organic foams enables an improved electron transfer and ion diffusion performance. J. Alloy. Compd. 817, 153293 (2020)

    Article  CAS  Google Scholar 

  8. A. Gassoumi, K. Mounir, Sn2Sb2S5 films for photovoltaic applications. J. Optoelectron. Adv. Mater. 11, 414–420 (2009)

    CAS  Google Scholar 

  9. N. Bennaji, R. Lahouli, Y. Fadhli, I. Mellouki, M. Kanzari, K. Khirouni, N. Yacoubi, Tuning of the electrical and thermal properties of SnSb2S4 sulfosalt vacuum evaporated thin films subjected to a heat treatment for thermoelectric application. Sens. Actuators A: Phys. 281, 67–75 (2018)

    Article  CAS  Google Scholar 

  10. O.L. Kheifets, L.Y. Kobelev, N.V. Melnikova, L.L. Nugaeva, Electrical properties of solid electrolytes with the general formula ABCD 3 (A = Ag, Cu; B = Pb, Sn; C = As, Sb; and D = S, Se). Tech. Phys. 52, 86–92 (2007)

    Article  CAS  Google Scholar 

  11. Y. Fadhli, A. Rabhi, M. Kanzari, Effect of air annealing on dispersive optical constants and electrical properties of SnSb2S4 thin films. Mater. Sci. Semicond. Process. 26, 282–287 (2014)

    Article  CAS  Google Scholar 

  12. R.M. Ben, N. Khedmi, M. Kanzari, Vacuum annealing effects on the structural and optical properties of SnSb2S4 thin films fabricated by thermal evaporation technique. Optik 126, 3104–3109 (2015)

    Article  Google Scholar 

  13. S. Li, S. Zuo, Z. Wu, Y. Liu, R. Zhuo, J. Feng, D. Yan, J. Wang, P. Yan, Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries. Electrochem. Acta 136, 355–362 (2014)

    Article  CAS  Google Scholar 

  14. A.M. Tripathi, S. Mitra, Tin sulfide (SnS) nanorods: structural, optical and lithium storage property study. RSC Adv. 4, 10358–10366 (2014)

    Article  CAS  Google Scholar 

  15. J. He, Y. Wei, T. Zhai, H. Li, Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium ion batteries. Mater. Chem. Front. 2, 437–455 (2018)

    Article  CAS  Google Scholar 

  16. C.-M. Park, Y. Hwa, N.-E. Sung, H.-J. Sohn, Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries. J. Mater. Chem. 20, 1097–1102 (2010)

    Article  CAS  Google Scholar 

  17. Z. Wei, L. Wang, M. Zhuo, W. Ni, H. Wang, J. Ma, Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J. Mater. Chem. A 6, 12185–12214 (2018)

    Article  CAS  Google Scholar 

  18. C. Yan, G. Chen, D. Chen, J. Pei, J. Sun, H. Xu, Y. Zhang, Z. Qiu, Double surfactant-directed controllable synthesis of Sb2S3 crystals with comparable electrochemical performances. Cryst. Eng. Comm. 16, 7753–7760 (2014)

    Article  CAS  Google Scholar 

  19. M.M.S. Sanad, Organic acid precursors effects on synthesis, microstructure and electrochemical performance of LiCoPO4 olivine compound. Mater. Res. Exp. 6, 105508 (2019)

    Article  CAS  Google Scholar 

  20. M.M. Ghannam, Z.K. Heiba, M.M.S. Sanad, M.B. Mohamed, Functional properties of ZnMn2O4/MWCNT/graphene nanocomposite as anode material for Li-ion batteries. Appl. Phys. A 126, 332 (2020)

    Article  CAS  Google Scholar 

  21. A. Rabhi, Y. Fadhli, M. Kanzari, Investigation on dispersive optical constants and microstructural parameters of the absorber CuSbS2 thin films. Vacuum 112, 59–65 (2015)

    Article  CAS  Google Scholar 

  22. Y. Fadhli, A. Rabhi, M. Kanzari, Optical constant and electrical resistivity of annealed Sn3Sb2S6 thin films. Acta Metall. Sin. (Engl. Lett.) 29, 287–294 (2016)

    Article  CAS  Google Scholar 

  23. L.A. Rodríguez-Guadarrama, I.L. Alonso-Lemus, J. Campos-Álvarez, G.J. Escorcia, Novel SnSb2S4 thin films obtained by chemical bath deposition using tartaric acid as complexing agent for their application as absorber in solar cells. MRS Adv. 4, 2035–2042 (2019)

    Article  CAS  Google Scholar 

  24. H. Li, L. Liu, Z. Wang, X. Zheng, S. Meng, S. Chen, X. Fu, Optimizing the precursor of sulfur source for hydrothermal synthesis of high performance CdS for photocatalytic hydrogen production. RSC Adv. 8, 11489–11497 (2018)

    Article  CAS  Google Scholar 

  25. Y. Wang, W. Chen, X. Chen, H. Feng, D. Shen, B. Huang, Y. Jia, Y. Zhou, Y. Liang, Effect of sulfur source on photocatalytic degradation performance of CdS/MoS2 prepared with one-step hydrothermal synthesis. J. Environ. Sci. 65, 347–355 (2018)

    Article  Google Scholar 

  26. M.M.S. Sanad, A.M. Elseman, M.M. Elsenety, M.M. Rashad, B.A. Elsayed, Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells. J. Mater. Sci.: Mater. Electron. 30, 6868–6875 (2019)

    CAS  Google Scholar 

  27. B. Ismail, S. Mushtaq, A. Khan, Enhanced grain growth in the Sn doped Sb2S3 thin film absorber materials for solar cell applications. Chalcogenide Lett. 11, 37–45 (2014)

    Google Scholar 

  28. R. González-Lúa, J. Escorcia-García, D. Pérez-Martínez, M.T.S. Nair, J. Campos, P.K. Nair, ECS J. Solid State Sci. Technol. 4, Q9–Q16 (2015)

    Article  CAS  Google Scholar 

  29. J.B. Li, D. Yan, X.J. Zhang, S.J. Hou, D.S. Li, T. Lu, Y.F. Yao, L.K. Pan, In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. Electrochim. Acta 228, 436–446 (2017)

    Article  CAS  Google Scholar 

  30. Y. Dong, S. Yang, Z. Zhang, J.-M. Lee, J.A. Zapien, Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials. Nanoscale 10, 3159–3165 (2018)

    Article  CAS  Google Scholar 

  31. C. Chen, G. Li, J. Zhu, Y. Lu, M. Jiang, Y. Hu, Z. Shen, X. Zhang, In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries. Carbon 120, 380–391 (2017)

    Article  CAS  Google Scholar 

  32. B. Zhao, D. Song, Y. Ding, J. Wu, Z. Wang, Z. Chen, Y. Jiang, J. Zhang, Ultrastable Li-ion battery anode by encapsulating SnS nanoparticles in sulfur-doping graphene bubble film. Nanoscale 12, 3941–3949 (2020)

    Article  CAS  Google Scholar 

  33. Y. Huang, S.L. Candelaria, Y. Li, Z. Li, J. Tian, L. Zhang, G. Cao, Sulfurized activated carbon for high energy density supercapacitors. J. Power Sources. 252, 90–97 (2014)

    Article  CAS  Google Scholar 

  34. B. Zhao, Y. Yang, Z. Wang, S. Huang, Y. Wang, S. Wang, Z. Chen, Y. Jiang, In-situ sulfuration synthesis of sandwiched spherical tin sulfide/sulfur-doped graphene composite with ultra-low sulfur content. J. Power Sour. 378, 81–89 (2018)

    Article  CAS  Google Scholar 

  35. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012)

    Article  CAS  Google Scholar 

  36. L. Cao, X. Gao, B. Zhang, X. Ou, J. Zhang, W.-B. Luo, Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 14, 3610–3620 (2020)

    Article  CAS  Google Scholar 

  37. B. Wang, X. Yang, L. Ma, L. Zhai, J. Xuan, C. Liu, Z. Bai, Ultra-high efficient pH induced selective removal of cationic and anionic dyes from complex coexisted solution by novel amphoteric biocomposite microspheres. Sep. Purif. Technol. 231, 115922 (2020)

    Article  CAS  Google Scholar 

  38. D.Y.W. Yu, S.K. Batabyal, J. Gun, S. Sladkevich, A.A. Mikhaylov, A.G. Medvedev, V.M. Novotortsev, O. Lev, P.V. Prikhodchenko, Antimony and antimony oxide@graphene oxide obtained by the peroxide route as anodes for lithium-ion batteries. Main Group Met. Chem. 38, 43–50 (2015)

    Article  CAS  Google Scholar 

  39. Z. Yi, Q.G. Han, Y. Cheng, Y.M. Wu, L.M. Wang, Facile synthesis of symmetric bundle-like Sb2S3 micron-structures and their application in lithium-ion battery anodes. Chem. Commun. 52, 7691–7694 (2016)

    Article  CAS  Google Scholar 

  40. D.Y.W. Yu, H.E. Hoster, S.K. Batabyal, Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 4, 4562 (2014)

    Article  CAS  Google Scholar 

  41. P.V. Prikhodchenko, J. Gun, S. Sladkevich, A.A. Mikhaylov, O. Lev, Y.Y. Tay, S.K. Batabyal, D.Y.W. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@graphene for a superior lithium battery anode. Chem. Mater. 24, 4750–4757 (2012)

    Article  CAS  Google Scholar 

  42. X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. Asian J. 9, 1611–1617 (2014)

    Article  CAS  Google Scholar 

  43. Y. Li, J.P. Tu, X.H. Huang, H.M. Wu, Y.F. Yuan, Nanoscale SnS with and without carbon-coatings as an anode material for lithium ion batteries. Electrochim. Acta 52, 1383–1389 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Academy of Scientific Research and Technology (Grant No. 20/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moustafa M. S. Sanad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanad, M.M.S., Shenouda, A.Y. Impact of sulphur-containing compounds on the electrochemical capabilities of spinel carbon-coated Sb2SnS4 nano-sheets as alternative anodes in lithium ion batteries. J Mater Sci: Mater Electron 32, 20489–20498 (2021). https://doi.org/10.1007/s10854-021-06558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06558-2

Navigation