Skip to main content
Log in

Assessment of triboelectricity in colossal-surface-area-lanthanum oxide nanocrystals synthesized via low-temperature hydrothermal process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENGs) have marked their applications in various fields, most importantly, in medical devices. The electrical output of the TENGs mainly concentrated on parameters such as electrode separation distance, applied mechanical pressure, surface charge density, and overlapping surface area. The surface area of the active layer in TENGs plays a crucial role. Given this, the present contribution is the first report on the utilization of lanthanum oxide (La2O3) as an active material with a large surface area (~ 72.33 m2/g) in TENGs. The nanocrystals of La2O3 have been successfully embedded into TENGs architecture through a high-quality screen-printed film with a Teflon-counter surface. The in-house test-rig of TENGs resulted in an output open-circuit voltage of 120 V and a short-circuit current of 23.7 μA. Further, the maximum power density is 7.125 W/m2 at an external load resistance of 30 MΩ. These results suggest that La2O3 is a suitable contender in various self-powered devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Liang, Q. Zhang, X. Yan, X. Liao, L. Han, F. Yi, M. Ma, Y. Zhang, Adv. Mater. 29, 1604961 (2017)

    Article  Google Scholar 

  2. H.Y. Mi, X. Jing, Q. Zheng, L. Fang, H.X. Huang, L.S. Turng, S. Gong, Nano Energy 48, 327 (2018)

    Article  CAS  Google Scholar 

  3. Z. Saadatnia, S.G. Mosanenzadeh, T. Li, E. Esmailzadeh, H.E. Naguib, Nano Energy 65, 104019 (2019)

    Article  CAS  Google Scholar 

  4. H.Y. Mi, X. Jing, M.A.B. Meador, H. Guo, L.S. Turng, S. Gong, ACS Appl. Mater. Interfaces 10, 30596 (2018)

    Article  CAS  Google Scholar 

  5. Y. Tang, Q. Zheng, B. Chen, Z. Ma, S. Gong, Nano Energy 38, 401 (2017)

    Article  CAS  Google Scholar 

  6. H. Wang, M. Shi, K. Zhu, Z. Su, X. Cheng, Y. Song, X. Chen, Z. Liao, M. Zhang, H. Zhang, Nanoscale 8, 18489 (2016)

    Article  CAS  Google Scholar 

  7. S.H. Ramaswamy, J. Shimizu, W. Chen, R. Kondo, J. Choi, Nano Energy 60, 875 (2019)

    Article  CAS  Google Scholar 

  8. B. Zhang, L. Zhang, W. Deng, L. Jin, F. Chun, H. Pan, B. Gu, H. Zhang, Z. Lv, W. Yang, Z.L. Wang, ACS Nano 11, 7440 (2017)

    Article  CAS  Google Scholar 

  9. Z. Saadatnia, S.G. Mosanenzadeh, E. Esmailzadeh, H.E. Naguib, Sci. Rep. 9, 1370 (2019)

    Article  Google Scholar 

  10. J. Sheng, S. Zhang, S. Lv, W. Sun, J. Mater. Sci. 42, 9565–9571 (2007)

    Article  CAS  Google Scholar 

  11. A.V. Murugan, A.K. Viswanath, J. Phys. D 39, 3974 (2006)

    Article  CAS  Google Scholar 

  12. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)

    Article  CAS  Google Scholar 

  13. J.W. Stouwdam, G.A. Hebbink, J. Huskens, F.C.J.M. Van Veggel, Chem. Mater. 15, 4604 (2003)

    Article  CAS  Google Scholar 

  14. Y. Xiao, Z. Feng, X. Huang, L. Huang, Z. Long, Q. Wang, Y. Hou, Chin. Sci. Bull. 59, 1864 (2014)

    Article  CAS  Google Scholar 

  15. P. Allenspach, U. Gasser, J. Alloys Compd. 311, 1 (2000)

    Article  CAS  Google Scholar 

  16. J. Zhang, Z. Zhang, Y. Jiao, H. Yang, Y. Li, J. Zhang, P. Gao, J. Power Sources 419, 99 (2019)

    Article  CAS  Google Scholar 

  17. Y. Zhou, W. Deng, J. Xu, J. Chen, Cell Rep. Phys. Sci. 1, 100142 (2020)

    Article  Google Scholar 

  18. L. Kong, Y. Tian, N. Li, Y. Liu, J. Zhang, J. Zhang, W. Zuo, Appl. Clay Sci. 162, 507 (2018)

    Article  CAS  Google Scholar 

  19. M. Ghiasi, A. Malekzadeh, Superlattices Microstruct. 77, 295 (2015)

    Article  CAS  Google Scholar 

  20. Q. Mu, Y. Wang, J. Alloys Compd. 509, 396 (2011)

    Article  CAS  Google Scholar 

  21. M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, J. Alloys Compd. 509, 4098 (2011)

    Article  CAS  Google Scholar 

  22. P.G.A. Krishna, N.J. Tharayil, AIP Conf. Proc. 2162, 20079 (2019)

    Article  Google Scholar 

  23. M. Osada, T. Sasaki, Adv. Mater. 24, 210 (2012)

    Article  CAS  Google Scholar 

  24. G.N. Sharma, K.V. Rao, V.S.S. Kumar, C.S. Chakra, V. Rajendar, P.R. Reddy, IOP Conf. Ser. Mater. Sci. Eng. 73, 012099 (2015)

    Article  Google Scholar 

  25. M.F. Vignolo, S. Duhalde, M. Bormioli, G. Quintana, M. Cervera, J. Tocho, Appl. Surf. Sci. 197, 522–526 (2002)

    Article  Google Scholar 

  26. S. Sivasankaran, M.J. Kishor Kumar, Ceram. Int. 41, 11301 (2015)

    Article  CAS  Google Scholar 

  27. M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, J. Alloys Compd. 509, 134 (2011)

    Article  CAS  Google Scholar 

  28. J. Deng, L. Zhang, C.T. Au, H. Dai, Mater. Lett. 63, 632 (2009)

    Article  CAS  Google Scholar 

  29. J. Liu, G. Wang, L. Lu, Y. Guo, L. Yang, RSC Adv. 7, 40965 (2017)

    Article  CAS  Google Scholar 

  30. W. Nowicki, Z.S. Piskuła, P. Kuźma, P. Kirszensztejn, J. Sol-Gel Sci. Technol. 82, 574 (2017)

    Article  CAS  Google Scholar 

  31. C. Hu, H. Liu, W. Dong, Y. Zhang, G. Bao, C. Lao, Z.L. Wang, Adv. Mater. 19, 470 (2007)

    Article  CAS  Google Scholar 

  32. F. Khosrow-Pour, M. Aghazadeh, S. Dalvand, B. Sabour, Mater. Lett. 104, 61 (2013)

    Article  CAS  Google Scholar 

  33. Q. Liang, X. Yan, Y. Gu, K. Zhang, M. Liang, S. Lu, X. Zheng, Y. Zhang, Sci. Rep. 5, 9080 (2015)

    Article  CAS  Google Scholar 

  34. Z. Wen, Q. Shen, X. Sun, Nano-Micro Lett. 9, 45 (2017)

    Article  Google Scholar 

  35. C. Zhang, Z.L. Wang, Micro Electro Mechanical Systems. Micro/Nano Technologies. Springer, Singapore, pp. 1335–1376 (2018)

    Google Scholar 

  36. A.S.P. Dewi, N. Mufti, A.A. Fibriyanti, M. Diantoro, A. Taufiq, A. Hidayat, Sunaryono, H. Nur, J. Polym. Res. 27, 1 (2020)

    Article  Google Scholar 

  37. M.R. Sovizi, S. Mirzakhani, New J. Chem. 44, 4927 (2020)

    Article  CAS  Google Scholar 

  38. S. Jafari Nejad, H. Abolghasemi, M.A. Moosavian, A. Golzary, M.G. Maragheh, J. Supercrit. Fluids 52, 292 (2010)

    Article  CAS  Google Scholar 

  39. A.A. Badawy, S.M. Ibrahim, Int. J. Ind. Chem. 7, 287 (2016)

    Article  CAS  Google Scholar 

  40. K. Ngaosuwan, W. Chaiyariyakul, O. Inthong, W. Kiatkittipong, D. Wongsawaeng, S. Assabumrungrat, Catal. Commun. 149, 106247 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Ms. Rashmi for her help taking in SEM micrographs. The authors would also like to thank the “Central Surface Analytical Facility of IIT Bombay” for the assistance in XPS characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Udaya Bhat.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meti, S., Sagar, H.P., Rahman, M.R. et al. Assessment of triboelectricity in colossal-surface-area-lanthanum oxide nanocrystals synthesized via low-temperature hydrothermal process. J Mater Sci: Mater Electron 32, 20351–20361 (2021). https://doi.org/10.1007/s10854-021-06545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06545-7

Navigation