Skip to main content
Log in

Calcium ion-selective electrode based on the facile synthesis of CuO over Cu wires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we report a simple, cost-effective and repeatable process to grow copper(II) oxide (CuO) over a Cu wire. Characterization of the prepared CuO structures revealed a pure phase of CuO with high-density nanostructures. By applying dibenzo-18-crown-6 as an ionophore, CuO (as a solid contact, SC) was developed into a calcium (Ca2+) ion-selective electrode (ISE) with a linear activity range between 10 μM and 100 mM, an average Nernstian slope (sensitivity) of 32.3 ± 1.3 mV/decade, and a lower limit of detection (LOD) of 10 μM. When tested for selectivity among three ions (magnesium, nickel, and sodium) in addition to the target ion, the electrode had better selectivity toward Ca2+ ions. We were able to demonstrate that the proposed Cu/CuO electrode was stable within the pH range from 5.0 to 9.0 for a period of 60 days. Our results of the proposed SC-ISE exhibit a good potential response and acceptable stability, and they show a clear indication that Cu/CuO nanostructures (SC-ISE) can be used as an ion-to-electron transducer for low-cost solid-state potentiometric sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Muscariello, D. Rendina, R. Giannettino et al., Nutrition. Metab. Cardiovasc. Dis. 31, 354 (2021). https://doi.org/10.1016/j.numecd.2020.08.005

    Article  CAS  Google Scholar 

  2. N. Bazarbashi, S.R. Kapadia, S.J. Nicholls et al., JACC Cardiovasc. Imaging 14, 259 (2021). https://doi.org/10.1016/j.jcmg.2020.06.030

    Article  Google Scholar 

  3. G.G. Schwartz, S. Tretli, M.G. Klug, T.E. Robsahm, Gynecol. Oncol. 159, 264 (2020). https://doi.org/10.1016/j.ygyno.2020.07.006

    Article  CAS  Google Scholar 

  4. C.D. Thybo, S.K. Lillevang, L.H. Skibsted, L. Ahrné, LWT 131, 109677 (2020). https://doi.org/10.1016/j.lwt.2020.109677

    Article  CAS  Google Scholar 

  5. B. Deng, P. Zhu, Y. Wang et al., Anal. Chem. 80, 5721 (2008). https://doi.org/10.1021/ac800715c

    Article  CAS  Google Scholar 

  6. A. de Jesus, A.V. Zmozinski, J.A. Barbara, M.G. Vale, M.M. Silva, Energy Fuels 24(3), 2109–2112 (2010)

    Article  Google Scholar 

  7. C. Yang, Y. Qin, D. Jiang, H.-Y. Chen, ACS Appl. Mater. Interfaces 8, 19892 (2016). https://doi.org/10.1021/acsami.6b05406

    Article  CAS  Google Scholar 

  8. R. Ahmad, N. Tripathy, M.S. Ahn, J.Y. Yoo, Y.B. Hahn, ACS Sens 3, 772 (2018). https://doi.org/10.1021/acssensors.7b00900

    Article  CAS  Google Scholar 

  9. J. Ping, Y. Wang, Y. Ying, J. Wu, Anal. Chem. 84, 3473 (2012). https://doi.org/10.1021/ac203480z

    Article  CAS  Google Scholar 

  10. A. Kumar, S.K. Mittal, Sens. Actuators B Chem. 99, 340 (2004). https://doi.org/10.1016/j.snb.2003.11.033

    Article  CAS  Google Scholar 

  11. M.H. Asif, A. Fulati, O. Nur et al., Appl. Phys. Lett. 95, 023703 (2009). https://doi.org/10.1063/1.3176441

    Article  CAS  Google Scholar 

  12. X. Liu, Y. Yao, Y. Shao, J. Wu, Y. Ying, J. Ping, Microchim. Acta 187, 525 (2020). https://doi.org/10.1007/s00604-020-04501-6

    Article  CAS  Google Scholar 

  13. Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Chem. Rev. 119, 478 (2019). https://doi.org/10.1021/acs.chemrev.8b00311

    Article  CAS  Google Scholar 

  14. Y.S. Rim, J. Inf. Disp. 21, 203 (2020). https://doi.org/10.1080/15980316.2020.1714762

    Article  CAS  Google Scholar 

  15. X. Shi, W. Gu, B. Li, N. Chen, K. Zhao, Y. Xian, Microchim. Acta 181, 1 (2014). https://doi.org/10.1007/s00604-013-1069-5

    Article  CAS  Google Scholar 

  16. X. Liu, Y. Yao, Y. Ying, J. Ping, TrAC Trends Anal. Chem. 115, 187 (2019). https://doi.org/10.1016/j.trac.2019.03.021

    Article  CAS  Google Scholar 

  17. N.H. Al-Hardan, A. Jalar, M.A.A. Hamid, L.K. Keng, R. Shamsudin, B.Y. Majlis, Sens. Actuators B Chem. 203, 223 (2014). https://doi.org/10.1016/j.snb.2014.06.120

    Article  CAS  Google Scholar 

  18. X. Zeng, W. Qin, Anal. Chim. Acta 982, 72 (2017). https://doi.org/10.1016/j.aca.2017.05.032

    Article  CAS  Google Scholar 

  19. G. Amin, M.H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, Sens. Lett. 10, 754 (2012). https://doi.org/10.1166/sl.2012.2336

    Article  CAS  Google Scholar 

  20. K. Khun, Z.H. Ibupoto, M. Willander, Electroanalysis 25, 1425 (2013). https://doi.org/10.1002/elan.201200660

    Article  CAS  Google Scholar 

  21. Z. Starowicz, K. Gawlińska-Nęcek, R.P. Socha et al., Mater Sci. Semicond. Process. 121, 105368 (2021). https://doi.org/10.1016/j.mssp.2020.105368

    Article  CAS  Google Scholar 

  22. K. Jindal, M. Tomar, V. Gupta, Biosens. Bioelectron. 38, 11 (2012). https://doi.org/10.1016/j.bios.2012.03.043

    Article  CAS  Google Scholar 

  23. Y. Zhang, Y. Liu, L. Su et al., Sens. Actuators B Chem. 191, 86 (2014). https://doi.org/10.1016/j.snb.2013.08.096

    Article  CAS  Google Scholar 

  24. D. Nunes, A. Pimentel, L. Santos et al., in Metal oxide nanostructures. ed. by D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins (Elsevier, Amsterdam, 2019)

    Google Scholar 

  25. R. Daira, A. Kabir, B. Boudjema, C. Sedrati, Solid State Sci. 104, 106254 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106254

    Article  CAS  Google Scholar 

  26. K. Khun, Z.H. Ibupoto, S.M.U. Ali, C.O. Chey, O. Nur, M. Willander, Electroanalysis 24, 521 (2012). https://doi.org/10.1002/elan.201100494

    Article  CAS  Google Scholar 

  27. Z.H. Ibupoto, S.M.U. Ali, K. Khun, M. Willander, Journal of Nanotechnology 2012, 1 (2012). https://doi.org/10.1155/2012/619062

    Article  CAS  Google Scholar 

  28. Z.H. Ibupoto, K. Khun, M. Willander, Sensors 13, 1984 (2013). https://doi.org/10.3390/s130201984

    Article  CAS  Google Scholar 

  29. X.V. Zhen, C.R. Rousseau, P. Bühlmann, Anal. Chem. 90, 11000 (2018). https://doi.org/10.1021/acs.analchem.8b02595

    Article  CAS  Google Scholar 

  30. J. Hu, A. Stein, P. Bühlmann, TrAC Trends Anal. Chem. 76, 102 (2016). https://doi.org/10.1016/j.trac.2015.11.004

    Article  CAS  Google Scholar 

  31. N. Mitrou, G.-P. Nikoleli, D.P. Nikolelis, N. Psaroudakis, M. Scoullos, Electroanalysis 26, 919 (2014). https://doi.org/10.1002/elan.201400089

    Article  CAS  Google Scholar 

  32. E. Zdrachek, E. Bakker, Anal. Chem. 91, 2 (2019). https://doi.org/10.1021/acs.analchem.8b04681

    Article  CAS  Google Scholar 

  33. H.J. James, G. Carmack, H. Freiser, Anal. Chem. 44, 856 (1972). https://doi.org/10.1021/ac60312a046

    Article  CAS  Google Scholar 

  34. X. Zeng, W. Qin, Talanta 209, 120570 (2020). https://doi.org/10.1016/j.talanta.2019.120570

    Article  CAS  Google Scholar 

  35. Y. Shao, Y. Ying, J. Ping, Chem. Soc. Rev. 49, 4405 (2020). https://doi.org/10.1039/C9CS00587K

    Article  CAS  Google Scholar 

  36. C. Jiang, Y. Yao, Y. Cai, J. Ping, Sens. Actuators B Chem. 283, 284 (2019). https://doi.org/10.1016/j.snb.2018.12.040

    Article  CAS  Google Scholar 

  37. G. Absalan, M. Arabi, R. Khalifeh, H. Sharghi, J. Tashkhourian, IEEE Sens. J. 14, 349 (2014). https://doi.org/10.1109/jsen.2013.2282320

    Article  CAS  Google Scholar 

  38. M.Q. Israr, J.R. Sadaf, O. Nur, M. Willander, S. Salman, B. Danielsson, Appl. Phys. Lett. 98, 253705 (2011). https://doi.org/10.1063/1.3599583

    Article  CAS  Google Scholar 

  39. P. Uthirakumar, M. Devendiran, T.H. Kim, S. Kalaiarasan, I.-H. Lee, Mater. Sci. Eng. B 260, 114652 (2020). https://doi.org/10.1016/j.mseb.2020.114652

    Article  CAS  Google Scholar 

  40. K. Krishnamoorthy, S.-J. Kim, Mater. Res. Bull. 48, 3136 (2013). https://doi.org/10.1016/j.materresbull.2013.04.082

    Article  CAS  Google Scholar 

  41. S. Choudhary, J.V.N. Sarma, S. Pande et al., AIP Adv. 8, 055114 (2018). https://doi.org/10.1063/1.5028407

    Article  CAS  Google Scholar 

  42. XPSPEAK 4.1, XPS Peak software.2013.http://sml.hkbu.edu.hk/links.html. accessed

  43. H. Yan, X. Tian, F. Ma, J. Sun, Sens. Actuator B Chem. 221, 599 (2015). https://doi.org/10.1016/j.snb.2015.06.139

    Article  CAS  Google Scholar 

  44. Z. Wang, L. Zhang, T.U. Schülli et al., Angew. Chem. Int. Ed. 58, 17604 (2019). https://doi.org/10.1002/anie.201909182

    Article  CAS  Google Scholar 

  45. R.P. Buck, V.V. Cosofret, Pure Appl. Chem. 65, 1849 (1993). https://doi.org/10.1351/pac199365081849

    Article  CAS  Google Scholar 

  46. Y. Umezawa, P. Bühlmann, K. Umezawa, K. Tohda, S. Amemiya, Pure Appl. Chem. 72, 1851 (2000). https://doi.org/10.1351/pac200072101851

    Article  CAS  Google Scholar 

  47. K.S. Ying, L.Y. Heng, N.I. Hassan, S.A. Hasbullah, Sensors 20, 6898 (2020). https://doi.org/10.3390/s20236898

    Article  CAS  Google Scholar 

  48. U. Oesch, D. Ammann, W. Simon, Clin. Chem. 32, 1448 (1986). https://doi.org/10.1093/clinchem/32.8.1448

    Article  CAS  Google Scholar 

  49. Y.M. Issa, F.M. Abu Attia, N.S. Ismail, J. Adv. Res. 1, 79 (2010). https://doi.org/10.1016/j.jare.2010.02.006

    Article  Google Scholar 

  50. J. Wang, Z. Du, W. Wang, W. Xue, Int. J. Electrochem. 2011, 958647 (2011). https://doi.org/10.4061/2011/958647

    Article  CAS  Google Scholar 

  51. M.A. Abbasi, Z.H. Ibupoto, M. Hussain et al., Sensors 12, 15424 (2012). https://doi.org/10.3390/s121115424

    Article  CAS  Google Scholar 

  52. C.M. Choi, J. Heo, N.J. Kim, Chem. Cent. J. 6, 84 (2012). https://doi.org/10.1186/1752-153X-6-84

    Article  CAS  Google Scholar 

  53. F. Gámez, P. Hurtado, B. Martínez-Haya, G. Berden, J. Oomens, Int. J. Mass Spectrom. 308, 217 (2011). https://doi.org/10.1016/j.ijms.2011.06.015

    Article  CAS  Google Scholar 

  54. C. Liotta, L, J. Berkner, in Encyclopedia of reagents for organic synthesis. ed. by L.A. Paquette (Wiley, Chichester, 2001)

    Google Scholar 

  55. L.C. Manege, T. Takayanagi, M. Oshima, T. Iwachido, S. Motomizu, Bullet. Chem. Soc. Jpn. 72, 1301 (1999). https://doi.org/10.1246/bcsj.72.1301

    Article  CAS  Google Scholar 

  56. D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Mater. Res. Bull. 48, 923 (2013). https://doi.org/10.1016/j.materresbull.2012.11.081

    Article  CAS  Google Scholar 

  57. C. Ràfols, E. Bosch, R. Barbas, R. Prohens, Talanta 154, 354 (2016). https://doi.org/10.1016/j.talanta.2016.03.075

    Article  CAS  Google Scholar 

  58. J. Zhai, X. Xie, E. Bakker, Chem. Commun. 50, 12659 (2014). https://doi.org/10.1039/C4CC05754F

    Article  CAS  Google Scholar 

  59. A.K. Jain, J. Raisoni, S. Jain, Int. J. Environ. Anal. Chem. 88, 209 (2008). https://doi.org/10.1080/03067310701597269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by Universiti Kebangsaan Malaysia (UKM), grant number GGPM-2020-047. The authors acknowledge the help of the Centre for Research and Instrumentation Management (CRIM) at UKM for providing the FE-SEM, XRD, and XPS spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naif H. Al-Hardan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hardan, N.H., Hamid, M.A.A., Firdaus-Raih, M. et al. Calcium ion-selective electrode based on the facile synthesis of CuO over Cu wires. J Mater Sci: Mater Electron 32, 20240–20251 (2021). https://doi.org/10.1007/s10854-021-06527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06527-9

Navigation