Skip to main content
Log in

Investigation of luminescence spectroscopic characteristics in Eu3+-doped Zn2SiO4 by Judd–Ofelt parameters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Optical properties of a phosphor material depend on the nature of the impurity and the site of occupancy of the dopant in the host matrix. In metal silicates with the general formula M2SiO4, there are two cationic sites and, possibility of three different occupancy sites. The site occupancy of the dopant decides the emission characteristics of such a phosphor material. Herein we report the fabrication and photoluminescence studies of europium (Eu3+)-doped Zn2SiO4 nanophosphor. We show that the site occupancy of the Eu3+ has an influence on the emission spectrum of the luminophore. Phase formation, purity, surface morphological characteristics and particle size of the Eu3+:Zn2SiO4 are characterized by powder X-ray diffraction (PXRD), Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The excitation spectra were recorded monitoring emission at 614 nm emission. The photoluminescence emission spectra of Eu3+ in Zn2SiO4 upon excitation at 395 and 465 nm are studied. The emission spectra of the Zn2SiO4: xEu3+ (x = 0.01–0.11) showed series of emission spectra corresponding to electric dipole and magnetic dipole transitions of Eu3+ characteristic f-f transitions. Judd–Ofelt (JO) intensity parameters are calculated to understand the emission behavior of Eu3+ luminophore in Zn2SiO4 phosphor. There is a higher covalency of Eu–O in samples with higher Eu3+ concentration as evident from Ω2 and Ω4 values. Furthermore, the concentration quenching in Zn2SiO4: xEu3+ observed beyond x = 0.05 is dominated by multipole-multipole interaction due to non-radiative transitions. The decay lifetime is also calculated for all the samples monitoring the emission at 614 nm and it shows higher lifetime for the sample with x = 0.05. The CIE color coordinates are also calculated and found to be (x, y = 0.662, 0.338).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.K. Sharma, A.-V. Mudring, P. Ghosh, Recent trends in binary and ternary rare-earth fluoride nanophosphors: how structural and physical properties influence optical behavior. J. Lumin. 189, 44–63 (2017). https://doi.org/10.1016/j.jlumin.2017.03.062

    Article  CAS  Google Scholar 

  2. B. Yang, H. Chen, Z. Zheng, G. Li, Application of upconversion rare earth fluorescent nanoparticles in biomedical drug delivery system. J. Lumin. 223, 117226 (2020). https://doi.org/10.1016/j.jlumin.2020.117226

    Article  CAS  Google Scholar 

  3. P. Huang, W. Zheng, Z. Gong, W. You, J. Wei, X. Chen, Rare earth ion– and transition metal ion–doped inorganic luminescent nanocrystals: from fundamentals to biodetection. Mater. Today Nano 5, 100031 (2019). https://doi.org/10.1016/j.mtnano.2019.100031

    Article  Google Scholar 

  4. A.R. Lakshmanan, Photoluminescence and thermostimulated luminescence processes in rare-earth-doped CaSO4 phosphors. Prog. Mater Sci. 44, 1–187 (1999). https://doi.org/10.1016/S0079-6425(99)00003-1

    Article  CAS  Google Scholar 

  5. A.P. D’Silva, V.A. Fassel, Chapter 37E X-ray excited optical luminescence of the rare earths, in Handbook on the Physics and Chemistry of Rare Earths. (Elsevier, New York, 1979), pp. 441–456

    Google Scholar 

  6. D. van der Voort, J.M.E. de Rijk, R. van Doorn, G. Blasse, Luminescence of rare-earth ions in Ca3(BO3)2. Mater. Chem. Phys. 31, 333–339 (1992). https://doi.org/10.1016/0254-0584(92)90195-E

    Article  Google Scholar 

  7. K. Binnemans, Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015). https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  8. G. Vicentini, L.B. Zinner, J. Zukerman-Schpector, K. Zinner, Luminescence and structure of europium compounds. Coord. Chem. Rev. 196, 353–382 (2000). https://doi.org/10.1016/S0010-8545(99)00220-9

    Article  CAS  Google Scholar 

  9. G. Annadurai, L. Sun, H. Guo, X. Huang, Bright tunable white-light emissions from Bi3+/Eu3+ co-doped Ba2Y5B5O17 phosphors via energy transfer for UV-excited white light-emitting diodes. J. Lumin. 226, 117474 (2020). https://doi.org/10.1016/j.jlumin.2020.117474

    Article  CAS  Google Scholar 

  10. K. Ding, A. Siru, S. Pang, L. Shan, Y. Zhang, P. Sun, B. Deng, R. Yu, A potential red-emitting phosphor Ca2YTaO6:Eu3+: luminescence properties, thermal stability, and applications for white LEDs. J. Rare Earths (2020). https://doi.org/10.1016/j.jre.2020.07.006

    Article  Google Scholar 

  11. K. Asami, J. Ueda, S. Tanabe, Long persistent luminescence and blue photochromism in Eu2+-Dy3+ co-doped barium silicate glass ceramic phosphor. J. Lumin. 207, 246–250 (2019). https://doi.org/10.1016/j.jlumin.2018.11.006

    Article  CAS  Google Scholar 

  12. M.R. Cicconi, G. Giuli, E. Paris, D.B. Dingwell, Europium structural environment in a sodium disilicate glass by XAS. J. Non-Cryst. Solids 356, 1749–1753 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.06.029

    Article  CAS  Google Scholar 

  13. D. Ghosh, K. Biswas, S. Balaji, K. Annapurna, Realization of warm white light from Ce-Eu-Tb doped zinc fluoroboro silicate glass for lighting applications. J. Alloys Compd. 747, 242–249 (2018). https://doi.org/10.1016/j.jallcom.2018.02.326

    Article  CAS  Google Scholar 

  14. A. Herrmann, M. Tewelde, S. Kuhn, M. Tiegel, C. Rüssel, The effect of glass composition on the luminescence properties of Sm3+ doped alumino silicate glasses. J. Non-Cryst. Solids 502, 190–197 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.09.008

    Article  CAS  Google Scholar 

  15. L. Zhang, G. Wang, Y. Lu, F. Zhang, G. Jia, C. Zhang, Novel bismuth silicate based upconversion phosphors: facile synthesis, structure, luminescence properties, and applications. J. Lumin. 216, 116718 (2019). https://doi.org/10.1016/j.jlumin.2019.116718

    Article  CAS  Google Scholar 

  16. B.C. Babu, S. Buddhudu, Dielectric properties of Willemite Zn2SiO4 nano powders by sol-gel method. Phys. Procedia 49, 128–136 (2013). https://doi.org/10.1016/j.phpro.2013.10.019

    Article  CAS  Google Scholar 

  17. B.C. Babu, G.-G. Wang, B. Yan, Q. Yang, A.P. Baker, Effects of Cr3+ addition on the structure and optical properties of α-Zn2SiO4 synthesized by sol-gel method. Ceram. Int. 44, 938–946 (2018). https://doi.org/10.1016/j.ceramint.2017.10.026

    Article  CAS  Google Scholar 

  18. Z. Qiao, T. Yan, X. Zhang, C. Zhu, W. Li, B. Huang, Low-temperature hydrothermal synthesis of Zn2SiO4 nanostructures and the novel photocatalytic application in wastewater treatment. Catal. Commun. 106, 78–81 (2018). https://doi.org/10.1016/j.catcom.2017.12.021

    Article  CAS  Google Scholar 

  19. K. Dhanalakshmi, R.H. Krishna, A.J. Reddy, M.N. Chandraprabha, D.L. Monika, L. Parashuram, Photo- and thermoluminescence properties of single-phase white light-emitting Y2−xSiO5:xDy3+ nanophosphor: a concentration-dependent structural and optical study. Appl. Phys. A. 125, 526 (2019). https://doi.org/10.1007/s00339-019-2814-3

    Article  CAS  Google Scholar 

  20. C. Manjunath, M.S. Rudresha, B.M. Walsh, R.H. Krishna, B.M. Nagabhushana, B.S. Panigrahi, Optical transition probabilities of white light emitting Sr2SiO4:Dy3+ nanophosphors for lighting applications using Judd−Ofelt analysis. J. Lumin. 211, 437–445 (2019). https://doi.org/10.1016/j.jlumin.2019.03.054

    Article  CAS  Google Scholar 

  21. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016). https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  Google Scholar 

  22. K.C. Patil, M.S. Hegde, T. Rattan, S.T. Aruna, Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications. World Sci. (2008). https://doi.org/10.1142/6754

    Article  Google Scholar 

  23. D.L. Monika, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, R.H. Krishna, Synthesis of multicolor emitting Sr2−xSmxCeO4 nanophosphor with compositionally tuneable photo and thermoluminescence. Chem. Eng. J. 253, 155–164 (2014). https://doi.org/10.1016/j.cej.2014.05.028

    Article  CAS  Google Scholar 

  24. B.D. Cullity, Elements of X-ray diffraction. Am. J. Phys. 25, 394–395 (1957). https://doi.org/10.1119/1.1934486

    Article  Google Scholar 

  25. G. Essalah, G. Kadim, A. Jabar, R. Masrour, M. Ellouze, H. Guermazi, S. Guermazi, Structural, optical, photoluminescence properties and Ab initio calculations of new Zn2SiO4/ZnO composite for white light emitting diodes. Ceram. Int. 46, 12656–12664 (2020). https://doi.org/10.1016/j.ceramint.2020.02.031

    Article  CAS  Google Scholar 

  26. R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, N.S. Murthy, S.C. Sharma, C. Shivakumara, R.P.S. Chakradhar, Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor. J. Phys. Chem. C. 117, 1915–1924 (2013). https://doi.org/10.1021/jp309684b

    Article  CAS  Google Scholar 

  27. R.H. Krishna, B.M. Nagabhushana, B.N. Sherikar, N.S. Murthy, C. Shivakumara, T. Thomas, Luminescence enhancement in monoclinic CaAl2O4:Eu2+, Cr3+ nanophosphor by fuel-blend combustion synthesis. Chem. Eng. J. 267, 317–323 (2015). https://doi.org/10.1016/j.cej.2014.12.102

    Article  CAS  Google Scholar 

  28. K. Dhanalakshmi, A.J. Reddy, D.L. Monika, R.H. Krishna, L. Parashuram, Concentration dependent luminescence spectral investigation of Sm3+ doped Y2SiO5 nanophosphor. J. Non-Cryst. Solids 471, 195–201 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.040

    Article  CAS  Google Scholar 

  29. A. Yousif, B.H. Abas, S. Som, N.J. Shivaramu, H.C. Swart, Structural and luminescence properties of Y2O3:Eu3+ red phosphor by incorporation of Ga3+ and Bi3+ ions. Mater. Res. Bull. 124, 110752 (2020). https://doi.org/10.1016/j.materresbull.2019.110752

    Article  CAS  Google Scholar 

  30. C. Manjunath, M.S. Rudresha, R.H. Krishna, B.M. Nagabhushana, B.M. Walsh, K.R. Nagabhushana, B.S. Panigrahi, Spectroscopic studies of strong red emitting Sr2SiO4:Eu3+ nanophosphors with high color purity for application in WLED using Judd-Ofelt theory and TL glow curve analysis. Opt. Mater. 85, 363–372 (2018). https://doi.org/10.1016/j.optmat.2018.08.070

    Article  CAS  Google Scholar 

  31. S. Behara, R.H. Krishna, M. Muralidhar, M. Murakami, M. Irfan, S. Najma, T. Thomas, Amphotericity-spectroscopy correlations in Eu doped sodium bismuth titanate (Na0.5Bi0.5TiO3). Materialia (2019). https://doi.org/10.1016/j.mtla.2019.100426

    Article  Google Scholar 

  32. S. Manjunatha, R.H. Krishna, T. Thomas, B.S. Panigrahi, M.S. Dharmaprakash, Moss-Burstein effect in stable, cubic ZrO2: Eu+3 nanophosphors derived from rapid microwave-assisted solution-combustion technique. Mater. Res. Bull. 98, 139–147 (2018). https://doi.org/10.1016/j.materresbull.2017.10.006

    Article  CAS  Google Scholar 

  33. B.M. Walsh, Judd-Ofelt theory: principles and practices, in Advances in Spectroscopy for Lasers and Sensing. ed. by B. Di Bartolo, O. Forte (Springer, Dordrecht, 2006), pp. 403–433

    Chapter  Google Scholar 

  34. L. Ungur, 1—Introduction to the electronic structure, luminescence, and magnetism of lanthanides, in Lanthanide-Based Multifunctional Materials. ed. by P. Martín-Ramos, M. Ramos Silva (Elsevier, New York, 2018), pp. 1–58

    Google Scholar 

  35. K. Reddy, D.L. Monika, C. Manjunath et al., Facile self-propagating combustion synthesis of MgO: Eu3+ orange-red nanophosphor and luminescence investigation by Judd-Ofelt intensity parameters. Optik 174, 234–243 (2018). https://doi.org/10.1016/j.ijleo.2018.08.047

    Article  CAS  Google Scholar 

  36. E. Cantelar, J.A. Sanz-García, A. Sanz-Martín, J.E. Muñoz Santiuste, F. Cussó, Structural, photoluminescent properties and Judd-Ofelt analysis of Eu3+-activated CaF2 nanocubes. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152194

    Article  Google Scholar 

  37. D. Alexander, M. Joy, K. Thomas, S. Sisira, P.R. Biju, N.V. Unnikrishnan, C. Sudarsanakumar, M.A. Ittyachen, C. Joseph, Efficient green luminescence of terbium oxalate crystals: a case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence. J. Solid State Chem. 262, 68–78 (2018). https://doi.org/10.1016/j.jssc.2018.02.017

    Article  CAS  Google Scholar 

  38. S.G.P. Kumar, R.H. Krishna, N. Kottam, P.K. Murthy, C. Manjunatha, R. Preetham, C. Shivakumara, T. Thomas, Understanding the photoluminescence behaviour in nano CaZrO3:Eu3+ pigments by Judd-Ofelt intensity parameters. Dyes Pigments 150, 306–314 (2018). https://doi.org/10.1016/j.dyepig.2017.12.022

    Article  CAS  Google Scholar 

  39. M. Seshadri, K.V. Rao, J.L. Rao, Y.C. Ratnakaram, Spectroscopic and laser properties of Sm3+ doped different phosphate glasses. J. Alloys Compd. 476, 263–270 (2009). https://doi.org/10.1016/j.jallcom.2008.09.033

    Article  CAS  Google Scholar 

  40. J. Shivakumara, S. Ashoka, G. Vijayakumar, C. Manjunatha, B.M. Nagabhushana, G. Nagaraju, Elimination of quenching defects by facile anion doping in CdSiO3 synthesized by green fuel assisted combustion method. Optik 154, 670–675 (2018)

  41. J. Drabik, L. Marciniak, The influence of Eu3+ concentration on the spectroscopic properties of YAG:Ti, Eu3+ nanocrystalline luminescent thermometer. J. Lumin. 208, 213–217 (2019). https://doi.org/10.1016/j.jlumin.2018.12.054

    Article  CAS  Google Scholar 

  42. L. Marciniak, Y. Guyot, D. Hreniak, W. Strek, The impact of Eu3+ concentration on charge transfer and f–f transitions in KLa1−xEuxP4O12 nanocrystals. J. Lumin. 169, 238–244 (2016). https://doi.org/10.1016/j.jlumin.2015.08.053

    Article  CAS  Google Scholar 

  43. X. Xie, J. Chen, Y. Song, X. Zhou, K. Zheng, X. Zhang, Z. Shi, H. Zou, Y. Sheng, Zn2SiO4:Eu3+ micro-structures: controlled morphologies and luminescence properties. J. Lumin. 187, 564–572 (2017). https://doi.org/10.1016/j.jlumin.2017.04.003

    Article  CAS  Google Scholar 

  44. M. Rejman, V. Babin, R. Kucerková, M. Nikl, Temperature dependence of CIE-x, y color coordinates in YAG: Ce single crystal phosphor. J. Lumin. 187, 20–25 (2017). https://doi.org/10.1016/j.jlumin.2017.02.047

    Article  CAS  Google Scholar 

  45. T. Rivas, J.M. Matías, J. Taboada, C. Ordóñez, Functional experiment design for the analysis of colour changes in granite using new L∗a∗b∗ functional colour coordinates. J. Comput. Appl. Math. 235, 4701–4716 (2011). https://doi.org/10.1016/j.cam.2010.08.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Hari Krishna or B. V. Nagesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathibha, K.N., Krishna, R.H., Nagesh, B.V. et al. Investigation of luminescence spectroscopic characteristics in Eu3+-doped Zn2SiO4 by Judd–Ofelt parameters. J Mater Sci: Mater Electron 32, 20197–20210 (2021). https://doi.org/10.1007/s10854-021-06524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06524-y

Navigation